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Example 1: Reading time differences in subject vs
object relatives in English

We begin with a relatively simple question from the psycholinguistics
literature: are subject relatives easier to process than object relatives? The
data come from Experiment 1 in a paper by Grodner and Gibson (2005).

Shravan Vasishth 04 Hierarchical linear modeling 27 June 2019 2 / 72



Example 1: Reading time differences in subject vs
object relatives in English

Scientific question: Is there a subject relative advantage in reading?
(1a) The reporter who the photographer sent to the editor was hoping for a
good story. (object gap)
(1b) The reporter who sent the photographer to the editor was hoping for a
good story. (subject gap)
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Example 1: Reading time differences in subject vs
object relatives in English

Load data and reformat
gg05e1 <- read.table("data/GrodnerGibson2005E1.csv",

sep=",", header=T)
gge1 <- gg05e1 %>% filter(item != 0)

gge1 <- gge1 %>%
mutate(word_positionnew = ifelse(item != 15 &

word_position > 10,
word_position-1,
word_position))
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Example 1: Reading time differences in subject vs
object relatives in English

Load data and reformat
#there is a mistake in the coding of word position,
#all items but 15 have regions 10 and higher coded
#as words 11 and higher

## get data from relative clause verb:
gge1crit <- subset(gge1, ( condition == "objgap" &

word_position == 6 ) |
( condition == "subjgap" & word_position == 4 ))
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Example 1: Reading time differences in subject vs
object relatives in English

Experiment design: Latin square and crossed subject and items
Two important properties of these data are worth noticing.

Latin square design
Crossed subjects and items
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Example 1: Reading time differences in subject vs
object relatives in English
Latin-square design
First, the design is the classic repeated measure Latin square set-up. To see
what this means, first look at the number of subjects and items, and the
number of rows in the data frame:
length(unique(gge1crit$subject))

## [1] 42
length(unique(gge1crit$item))

## [1] 16
dim(gge1crit)[1]

## [1] 672
There are 42 subjects and 16 items. There are 42× 16 = 672 rows in the
data frame.
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Example 1: Reading time differences in subject vs
object relatives in English

Latin-square design
Notice also that each subject sees exactly eight object gap and eight subject
gap sentences:
head(xtabs(~subject+condition,gge1crit),n=4)

## condition
## subject objgap subjgap
## 1 8 8
## 2 8 8
## 3 8 8
## 4 8 8
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Example 1: Reading time differences in subject vs
object relatives in English

Latin-square design

Table 1: The Latin-square design in repeated measures experiments.

item id group 1 group 2
1 objgap subjgap
2 subjgap objgap
3 objgap subjgap
4 subjgap objgap
...

...
...

16 subjgap objgap
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Example 1: Reading time differences in subject vs
object relatives in English

Latin-square design: Ensuring balance

sample(rep(c("order1","order2"),11))

## [1] "order1" "order1" "order2" "order2" "order2" "order2" "order1"
## [8] "order2" "order2" "order1" "order1" "order1" "order2" "order2"
## [15] "order2" "order1" "order2" "order1" "order1" "order2" "order1"
## [22] "order1"
Latin square designs are used in planned experiments because they are
optimal in several ways.
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Example 1: Reading time differences in subject vs
object relatives in English
Latin-square design: Generating fake data

library(MASS)

##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
## select
nitem <- 16
nsubj <- 42
## prepare data frame for two condition in a latin square design:
g1<-data.frame(item=1:nitem,

cond=rep(c("objgap","subjgap"),nitem/2))
g2<-data.frame(item=1:nitem,

cond=rep(c("subjgap","objgap"),nitem/2))
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Example 1: Reading time differences in subject vs
object relatives in English
Latin-square design: Generating fake data
## assemble data frame in long format:
gp1<-g1[rep(seq_len(nrow(g1)),

nsubj/2),]
gp2<-g2[rep(seq_len(nrow(g2)),

nsubj/2),]

fakedat<-rbind(gp1,gp2)
dim(fakedat) ## sanity check

## [1] 672 2
fakedat$subj<-rep(1:nsubj,each=nitem) ## add subjects
fakedat<-fakedat[,c(3,1,2)]
fakedat$so<-ifelse(fakedat$cond=="objgap",1,-1)
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Example 1: Reading time differences in subject vs
object relatives in English
Latin-square design: Generating fake data
For example, subject 1 sees the following conditions and items:
head(fakedat,n=16)
## subj item cond so
## 1 1 1 objgap 1
## 2 1 2 subjgap -1
## 3 1 3 objgap 1
## 4 1 4 subjgap -1
## 5 1 5 objgap 1
## 6 1 6 subjgap -1
## 7 1 7 objgap 1
## 8 1 8 subjgap -1
## 9 1 9 objgap 1
## 10 1 10 subjgap -1
## 11 1 11 objgap 1
## 12 1 12 subjgap -1
## 13 1 13 objgap 1
## 14 1 14 subjgap -1
## 15 1 15 objgap 1
## 16 1 16 subjgap -1
We will need this code later for fake data simulation.
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Example 1: Reading time differences in subject vs
object relatives in English
Fully crossed subjects and items
In the data, because of the Latin square design, each subject sees exactly
one item in one of the two conditions:
xtabs(~subject+item,gge1crit)

## item
## subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 26 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 27 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 29 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 33 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 37 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 38 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 39 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 42 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Example 1: Reading time differences in subject vs
object relatives in English

The implied generative model
The above design implies a particular statistical model that takes us beyond
the linear model.
To remind you, a simple linear model of the above data would be:

y ∼ Normal(α + β ∗ so, σ) (1)

Here, object gaps are coded +1, subject gaps -1. See Schad et al. (2018)
for an explanation of contrast coding.
gge1crit$so<-ifelse(gge1crit$condition=="objgap",1,-1)
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Example 1: Reading time differences in subject vs
object relatives in English
The implied generative model
As figure 1 shows, a Normal likelihood doesn’t seem well motivated, so we
will use the log-normal.
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Figure 1: Distribution of reading times in the Grodner and Gibson Experiment 1
data, at the critical region.
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Example 1: Reading time differences in subject vs
object relatives in English

The implied generative model

y ∼ LogNormal(α + β ∗ so, σ) (2)
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Example 1: Reading time differences in subject vs
object relatives in English

Between subject variability in mean reading time
Between subject variability
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Figure 2: Between subject variability in mean reading times.
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Example 1: Reading time differences in subject vs
object relatives in English

Between subject variability in mean reading time
In the linear model, we can express the assumption that the grand mean
intercept α needs an adjustment by subject, where subjects are indexed
from j = 1, . . . , J :

yj ∼ LogNormal(α + u0j + β ∗ soj , σ) (3)

where we now have two sources of variance:
within subject: σ
between subject variance in mean reading times: u0j ∼ Normal(0, σu0)
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Example 1: Reading time differences in subject vs
object relatives in English

Between item variability in mean reading time
Between item variability
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Figure 3: Between item variability in mean reading times.
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Example 1: Reading time differences in subject vs
object relatives in English

Between item variability in mean reading time
For items ranging from k = 1, . . . ,K , we can add this assumption to the
model:

ykj ∼ LogNormal(α + u0j + w0k + β ∗ sokj , σ) (4)

where there are now three variance components:
σ
u0j ∼ Normal(0, σu0)
between item variability in mean reading time, w0k ∼ Normal(0, σw0)

This model is called a varying intercepts model with crossed varying
intercepts for subjects and for items.
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Example 1: Reading time differences in subject vs
object relatives in English
Between subject and between item variability in objgap cost

Between subject variability

mean objgap cost
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Figure 4: Between subject and item variability in object gap vs subject gap
reading times.Shravan Vasishth 04 Hierarchical linear modeling 27 June 2019 22 / 72



Example 1: Reading time differences in subject vs
object relatives in English
Between subject and between item variability in objgap cost
We can incorporate this assumption into the model by adding adjustments
to the β parameter:

ykj ∼ LogNormal(α + u0j + w0k + (β + u1j + w1k) ∗ sokj , σ) (5)

where
σ
u0j ∼ Normal(0, σu0)
u1j ∼ Normal(0, σu1)
w0k ∼ Normal(0, σw0)
w1k ∼ Normal(0, σw1)

This is called the varying intercepts and slopes model with no correlation
between the intercepts and slopes.
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Example 1: Reading time differences in subject vs
object relatives in English

The “maximal” model
There is one detail still missing in the model: the adjustments to the
intercept and slope are correlated for subjects, and also for items.
In other words, we have a bivariate distribution for the subject and
item random effects:
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Example 1: Reading time differences in subject vs
object relatives in English

The “maximal” model

ykj ∼ LogNormal(α + u0j + w0k + (β + u1j + w1k) ∗ sokj , σ) (6)

where we have variance components: σ and

Σu =
(

σ2
u0 ρuσu0σu1

ρuσu0σu1 σ2
u1

)
Σw =

(
σ2

w0 ρwσw0σw1
ρwσw0σw1 σ2

w1

)
(7)

(
u0
u1

)
∼ N

((
0
0

)
,Σu

)
,

(
w0
w1

)
∼ N

((
0
0

)
,Σw

)
(8)
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Example 1: Reading time differences in subject vs
object relatives in English

The maximal model
This is a varying intercepts and slopes model with fully specified
variance-covariance matrices for the subject and item random effects. It is
sometimes called the maximal model (Barr et al. 2013).

Shravan Vasishth 04 Hierarchical linear modeling 27 June 2019 26 / 72



Example 1: Reading time differences in subject vs
object relatives in English

Implementing the model
The above model is simple to implement in the Bayesian framework.
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Example 1: Reading time differences in subject vs
object relatives in English

Specify and visualize priors
We define some priors first:

1 α ∼ Normal(0, 10)
2 β ∼ Normal(0, 1)
3 Residual standard deviation: σ ∼ Normal+(0, 1)
4 All other standard deviations: σ ∼ Normal+(0, 1)
5 Correlation matrix: ρ ∼ LKJ(2).
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Example 1: Reading time differences in subject vs
object relatives in English

The LKJ prior on the correlation matrix
In this model, we assume that the vector u = 〈u0, u1〉 comes from a
bivariate normal distribution with a variance-covariance matrix Σu .
This matrix has the variances of the adjustment to the intercept and to
the slope respectively along the diagonal, and the covariance on the
off-diagonals.
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Example 1: Reading time differences in subject vs
object relatives in English

The LKJ prior on the correlation matrix
Recall that the covariance Cov(X ,Y ) between two variables X and Y
is defined as the product of their correlation ρ and their standard
deviations σX and σY , such that, Cov(X ,Y ) = ρσXσY .

Σu =
(

σ2
u0 ρuσu0σu1

ρuσu0σu1 σ2
u1

)
(9)
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Example 1: Reading time differences in subject vs
object relatives in English

The LKJ prior on the correlation matrix
The covariance matrix can be decomposed into a vector of standard
deviations and a correlation matrix. The correlation matrix looks like this:(

1 ρu
ρu 1

)
(10)
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Example 1: Reading time differences in subject vs
object relatives in English

The LKJ prior on the correlation matrix
In Stan, we write a matrix that has 0’s on the off-diagonals as:

diag_matrix(σu0 , σu1) =
(
σu0 0
0 σu1

)
(11)

This means that we can decompose the covariance matrix into three parts:

Σu = diag_matrix(σu0 , σu1) · ρu · diag_matrix(σu0 , σu1)

=
(
σu0 0
0 σu1

)(
1 ρu
ρu 1

)(
σu0 0
0 σu1

)
(12)
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Example 1: Reading time differences in subject vs
object relatives in English

The LKJ prior on the correlation matrix
So we need priors for the σu’s and for ρu:

The basic idea of the LKJ prior is that its parameter (usually called eta,
η, here it has value 2) increases, the prior increasingly concentrates
around the unit correlation matrix (i.e., favors smaller correlation: ones
in the diagonals and values close to zero in the lower and upper
triangles).
At η = 1, the LKJ correlation distribution is uninformative (similar to
Beta(1, 1)), at η < 1, it favors extreme correlations (similar to
Beta(a < 1, b < 1)).
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Example 1: Reading time differences in subject vs
object relatives in English

Visualize the priors
As always, it is a good idea to visualize these priors. See Figure 5.
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Example 1: Reading time differences in subject vs
object relatives in English

Visualize the priors
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Figure 5: Priors for the Godner and Gibson data.
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Example 1: Reading time differences in subject vs
object relatives in English

Fit the model using brms

priors <- c(set_prior("normal(0, 10)",
class = "Intercept"),
set_prior("normal(0, 1)",

class = "b",
coef = "so"),

set_prior("normal(0, 1)",
class = "sd"),

set_prior("normal(0, 1)",
class = "sigma"),

set_prior("lkj(2)",
class = "cor"))
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Example 1: Reading time differences in subject vs
object relatives in English

Fit the model using brms

m_gg<-brm(rawRT~so + (1+so|subject) + (1+so|item),
gge1crit,family=lognormal(),

prior=priors)
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Example 1: Reading time differences in subject vs
object relatives in English
Fit the model using brms

cor_item__Intercept__so cor_subject__Intercept__so sigma

sd_item__so sd_subject__Intercept sd_subject__so

b_Intercept b_so sd_item__Intercept

−1.0 −0.5 0.0 0.5 1.0 0.00 0.25 0.50 0.75 1.00 0.34 0.36 0.38 0.40

0.00 0.05 0.10 0.15 0.2 0.3 0.4 0.5 0.05 0.10 0.15 0.20

5.7 5.8 5.9 6.0 6.1 −0.05 0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15
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Example 1: Reading time differences in subject vs
object relatives in English

Fit the model using brms
Look at the posterior distributions of the parameters on the log ms scale
(for the coefficients and standard deviations). Notice that

The object relative takes longer to read than the subject relative, as
predicted. We know this because the parameter b_so is positive.
The largest sources of variance are the subject intercepts, slopes, and
the residual standard deviation. Look at the sd_subject parameters,
and sigma.
The by-item variance components are relatively small. Look at the
sd_item parameters.
The correlations have very wide uncertainty—the prior is dominating in
determining the posteriors as there isn’t that much data to obtain
accurate estimates of these parameters. Look at the cor parameters.
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Example 1: Reading time differences in subject vs
object relatives in English

Examine by subject random effects visually
First, extract the posterior samples of the parameters that we will need to
compute individual differences.
library(bayesplot)

postgg<-posterior_samples(m_gg)
## extract variances:
alpha<-postgg$b_Intercept
beta<-postgg$b_so
cor<-posterior_samples(m_gg,"^cor")
sd<-posterior_samples(m_gg,"^sd")
sigma<-posterior_samples(m_gg,"sigma")
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Example 1: Reading time differences in subject vs
object relatives in English

Examine by subject random effects visually
## item random effects won't be used below
item_re<-posterior_samples(m_gg,"^r_item")
subj_re<-posterior_samples(m_gg,"^r_subj")
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Example 1: Reading time differences in subject vs
object relatives in English

By subject slope adjustments

u1,28u1,37u1,36u1,30u1,26u1,33u1,25u1,4u1,14u1,19u1,41u1,32u1,9u1,12u1,16u1,35u1,20u1,38u1,21u1,17u1,31u1,7u1,1u1,2u1,5u1,40u1,6u1,39u1,23u1,22u1,24u1,10u1,11u1,15u1,18u1,8u1,27u1,29u1,34u1,13u1,3u1,42

−0.50 −0.25 0.00 0.25 0.50

Figure 6: Variability in subject slope adjustments in the Grodner and Gibson data.
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Example 1: Reading time differences in subject vs
object relatives in English

By subject slope adjustments

u1,28u1,37u1,36u1,30u1,26u1,33u1,25u1,4u1,14u1,19u1,41u1,32u1,9u1,12u1,16u1,35u1,20u1,38u1,21u1,17u1,31u1,7u1,1u1,2u1,5u1,40u1,6u1,39u1,23u1,22u1,24u1,10u1,11u1,15u1,18u1,8u1,27u1,29u1,34u1,13u1,3u1,42
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Figure 7: Variability in subject slope adjustments in the Grodner and Gibson data.
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Example 1: Reading time differences in subject vs
object relatives in English

By subject slope adjustments
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

0.00 0.25 0.50 0.75 1.00
cor_subject__Intercept__so

Figure 8: Posterior distributions of subject varying intercept and slope correlation
parameter in the Grodner and Gibson data.
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Example 1: Reading time differences in subject vs
object relatives in English

Examine mean and individual differences on the raw ms scale
It is useful to see the effects on the raw ms scale. The log ms scale is
difficult to interpret.
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Example 1: Reading time differences in subject vs
object relatives in English

Mean difference
meandiff<- exp(alpha + beta) - exp(alpha - beta)
mean(meandiff)
## [1] 44.98135
round(quantile(meandiff,prob=c(0.025,0.975)),0)

## 2.5% 97.5%
## 7 85
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Example 1: Reading time differences in subject vs
object relatives in English

Mean difference
Mean OR vs SR processing cost

exp(α + β) − exp(α − β)
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Figure 9: Mean OR processing cost effect in the Grodner and Gibson data.
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Example 1: Reading time differences in subject vs
object relatives in English

Individual effects of OR processing cost
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Example 1: Reading time differences in subject vs
object relatives in English

Individual effects of OR processing cost

for(i in 1:42){
hist(subjdiff[,i],xlim=c(min(subjdiff),

max(subjdiff)),
main=paste("subj",colnames(subjdiff)[i],sep=" "))

Sys.sleep(.2)
}
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Example 1: Reading time differences in subject vs
object relatives in English

Individual effects of OR processing cost
This illustrates a point that Blastland and Spiegelhalter (2014) make: “The
average is an abstraction. The reality is variation.”
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Example 1: Reading time differences in subject vs
object relatives in English

To make discovery claims about the mean effect, calibrate the true
and false discovery rate

Suppose that, based on these data and this model, we want to claim
that there is a mean OR processing cost in English.
In order to make a discovery claim, we need to understand the true
discovery rate of this effect.
In the frequentist world, this would be the statistical power, the
probability of detecting an effect if there is in fact one.
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Example 1: Reading time differences in subject vs
object relatives in English

To make discovery claims, calibrate the true and false discovery rate
First, we write a function to generate fake data.
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Example 1: Reading time differences in subject vs
object relatives in English

To make discovery claims, calibrate the true and false discovery rate
Load file: gen_fake_lnorm.R
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Example 1: Reading time differences in subject vs
object relatives in English

To make discovery claims, calibrate the true and false discovery rate
Extract the parameter means from the Bayesian model, and assemble the
variance covariance matrices for the subject and item random effects.
sds<-colMeans(sd)
cors<-colMeans(cor)
sig<-mean(sigma$sigma)
Sigma_u<-diag(sds[3:4]^2)
Sigma_u[1,2]<-Sigma_u[2,1]<-cors[2]*sds[3]*sds[4]
Sigma_w<-diag(sds[1:2]^2)
Sigma_w[1,2]<-Sigma_w[2,1]<-cors[1]*sds[1]*sds[2]
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Example 1: Reading time differences in subject vs
object relatives in English

To make discovery claims, calibrate the true and false discovery rate
Then, we run 50 simulations, computing the 95% credible interval of
the OR processing cost effect.
Because this is a very time-consuming calculation, we are going to use
previously computed values.

nsim<-50
betaquants<-matrix(rep(NA,nsim*2),ncol =2)
betameans<-matrix(rep(NA,nsim),ncol =2)
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Example 1: Reading time differences in subject vs
object relatives in English
To make discovery claims, calibrate the true and false discovery rate

for(i in 1:nsim){
gg_fake<-gen_fake_lnorm(alpha=mean(alpha),

beta=mean(beta),
Sigma_u=Sigma_u,Sigma_w=Sigma_w,
sigma_e=sig)

m_gg_fake<-brm(rt~so + (1+so|subj) + (1+so|item),gg_fake,family=lognormal(),
prior=priors,
control = list(adapt_delta = 0.99,max_treedepth=15))

betapost<-posterior_samples(m_gg_fake)$b_so
betaquants[i,]<-quantile(betapost,prob=c(0.025,0.975))
betameans[i]<-mean(betapost)
}

Shravan Vasishth 04 Hierarchical linear modeling 27 June 2019 56 / 72



Example 1: Reading time differences in subject vs
object relatives in English

To make discovery claims, calibrate the true and false discovery rate
Assume that we are willing to declare an effect just in case 0 is not
included in the 95% credible interval of the effect.
The above simulation shows that we would detect the effect in only
half of the repeated experiments.

length(which(betaquants[,1]>0))/50 [1] 0.5
Thus, the true discovery rate is quite low. One would want the true
discovery rate to be at least 80%.
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Example 1: Reading time differences in subject vs
object relatives in English

To make discovery claims, calibrate the true and false discovery rate
We can also investigate the false discovery rate—the proportion of
times we would declare that we found an effect, when there is none.
In frequentist statistics, this is called Type I error. The only change
needed in the above simulation is to set β to 0, to reflect the
assumption that there is no effect.
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Example 1: Reading time differences in subject vs
object relatives in English
Posterior predictive checks

pp_check(m_gg, nsamples = 100)+
theme(text = element_text(size=16),

legend.text=element_text(size=16))

1000 2000 3000 4000 5000

y
yrep

Figure 10: Posterior predictive check for the Grodner and Gibson data.
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Example 2: Question-response accuracies (Logistic
regression)

The Grodner and Gibson (2005) data also has question-response accuracies:
1 if the response to a question following the sentence was correct, 0
otherwise. We show only the relevant columns below:
head(gge1crit[,c(1,2,3,8,11)])

## subject item condition qcorrect so
## 6 1 1 objgap 0 1
## 19 1 2 subjgap 1 -1
## 34 1 3 objgap 0 1
## 49 1 4 subjgap 1 -1
## 68 1 5 objgap 1 1
## 80 1 6 subjgap 1 -1
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Example 2: Question-response accuracies (Logistic
regression)
One could aggregate the accuracy by item, and then just fit a hierarchical
linear model:
meanp<-with(gge1crit,tapply(qcorrect,

IND=list(condition,subject),
mean))

q_df<-data.frame(subj=rep(c(1:42),2),
so=rep(c(1,-1),each=42),
p=c(meanp[1,],meanp[2,]))

head(q_df)

## subj so p
## 1 1 1 0.750
## 2 2 1 0.875
## 3 3 1 1.000
## 4 4 1 1.000
## 5 5 1 0.875
## 6 6 1 1.000
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Example 2: Question-response accuracies (Logistic
regression)
mqlmer<-lmer(p~so+(1|subj),q_df)

## boundary (singular) fit: see ?isSingular
summary(mqlmer)

## Linear mixed model fit by REML ['lmerMod']
## Formula: p ~ so + (1 | subj)
## Data: q_df
##
## REML criterion at convergence: -97.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.03723 -0.77697 -0.07063 0.91823 1.20076
##
## Random effects:
## Groups Name Variance Std.Dev.
## subj (Intercept) 0.00000 0.0000
## Residual 0.01598 0.1264
## Number of obs: 84, groups: subj, 42
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 0.86607 0.01379 62.794
## so 0.01786 0.01379 1.295
##
## Correlation of Fixed Effects:
## (Intr)
## so 0.000
## convergence code: 0
## boundary (singular) fit: see ?isSingular
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Example 2: Question-response accuracies (Logistic
regression)

Think about the generative process; a 0,1 response is best seen as generated
by a Bernoulli distribution with probability of success p:
response ∼ Bernoulli(p). This is the same as a Binomial process, with one
trial.

One can therefore model each 0,1 response as being generated from a
Bernoulli distribution, which is just a Binomial with a single trial. Thus,
what is of interest is the probability of correct responses in subject vs object
relatives:
round(100*with(gge1crit,

tapply(qcorrect,condition,mean)))

## objgap subjgap
## 88 85

Shravan Vasishth 04 Hierarchical linear modeling 27 June 2019 63 / 72



Example 2: Question-response accuracies (Logistic
regression)

We will transform the probability p of a correct response to a log-odds:

log p
1− p (13)

and assume that the log-odds of a correct response is affected by the
relative clause type:

log p
1− p = α + β ∗ so (14)
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Example 2: Question-response accuracies (Logistic
regression)

This model is called a logistic regression because it uses the logistic or logit
function to transform p to log odds space. Notice that there is no residual
term in this model.
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Example 2: Question-response accuracies (Logistic
regression)

We can fit the above model easily using brms:
m_gg_q1<-brm(qcorrect~so,gge1crit,

family=bernoulli(link="logit"))

## Compiling the C++ model

## Start sampling
summary(m_gg_q1)
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Example 2: Question-response accuracies (Logistic
regression)

Obviously, because the question-response data are also repeated measures,
we must use a hierarchical linear model, with varying intercepts and slopes
for subject and item, as in Example 1:
m_gg_q2<-brm(qcorrect~so+(1+so|subject) + (1+so|item),

gge1crit,family=bernoulli(link="logit"))

## Compiling the C++ model

## Start sampling
summary(m_gg_q2)

This model is not especially good because many of the response accuracies
are at ceiling. However, in principle this kind of model is appropriate for
binary responses.
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Example 2: Question-response accuracies (Logistic
regression)

Convert posteriors back to probability space
What is theoretically important is the posterior distribution of the difference
between object and subject relative response accuracy. That is on the
probability scale. We can go from log-odds space to probability space by
solving this equation for p.
Using simple algebra, we can go from:

log p
1− p = α + β ∗ so = µ (15)

to:

p = exp(µ)/(1 + exp(µ)) (16)
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Example 2: Question-response accuracies (Logistic
regression)

Convert posteriors back to probability space
For object gap sentences, the factor so is coded as 1, so we have µ = α+ β.
For subject gap sentences, so is coded as -1, so we have µ = α− β.
Therefore, we just need to plug in the expression for µ for object and
subject relatives.
We can now straightforwardly plot the posterior distribution of the
difference between object and subject relatives. We see that there isn’t any
important difference between the two relative clause types.
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Example 2: Question-response accuracies (Logistic
regression)

Convert posteriors back to probability space

postq<-posterior_samples(m_gg_q2)
alpha<-postq$b_Intercept
beta<-postq$b_so
mu_or<-alpha+beta
probor<-exp(mu_or)/(1+exp(mu_or))
mu_sr<-alpha-beta
probsr<-exp(mu_sr)/(1+exp(mu_sr))
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Example 2: Question-response accuracies (Logistic
regression)

Convert posteriors back to probability space

hist(probor-probsr,freq=FALSE)
abline(v=0,lwd=2)

Histogram of probor − probsr
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