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Preview: Steps in Bayesian analysis

The way we will conduct data analysis is as follows.

Given data, specify a likelihood function.
Specify prior distributions for model parameters.
Using software, derive marginal posterior distributions for parameters
given likelihood function and prior density.
Simulate parameters to get samples from posterior distributions of
parameters using some Markov Chain Monte Carlo (MCMC) sampling
algorithm.
Evaluate whether model makes sense, using model convergence
diagnostics, fake-data simulation, prior predictive and posterior
predictive checks.
Summarize posterior distributions of parameter samples and carry out
your scientific conclusion.
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Bayes’ rule
A and B are events. Conditional probability is defined as follows:

P(A|B) = P(A,B)
P(B) where P(B) > 0 (1)

This means that P(A,B) = P(A|B)P(B).

Since P(B,A) = P(A,B), we can write:

P(B,A) = P(B|A)P(A) = P(A|B)P(B) = P(A,B). (2)

Rearranging terms:

P(B|A) = P(A|B)P(B)
P(A) (3)

This is Bayes’ rule.
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Random variable theory

A random variable X is a function X : S → R that associates to each
outcome ω ∈ S exactly one number X (ω) = x .

SX is all the x ’s (all the possible values of X, the support of X). I.e.,
x ∈ SX . We can also sloppily write X ∈ SX .

Good example: number of coin tosses till H

X : ω → x

ω: H, TH, TTH,. . . (infinite)

x = 0, 1, 2, . . . ; x ∈ SX
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Random variable theory

Every discrete (continuous) random variable X has associated with it a
probability mass (density) function (pmf, pdf). I.e., PMF is used for
discrete distributions and PDF for continuous. (I will sometimes use lower
case for pdf and sometimes upper case. Some books use pdf for both
discrete and continuous distributions.)

pX : SX → [0, 1] (4)

defined by

pX (x) = P(X (ω) = x), x ∈ SX (5)
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Random variable theory

Probability density functions (continuous case) or probability mass functions
(discrete case) are functions that assign probabilities or relative frequencies
to all events in a sample space.

The expression

X ∼ f (·) (6)

means that the random variable X has pdf/pmf f (·). For example, if we say
that X ∼ N(µ, σ2), we are assuming that the pdf is

f (x) = 1√
2πσ2

exp[−(x − µ)2

2σ2 ] (7)
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Random variable theory

We also need a cumulative distribution function or cdf because, in the
continuous case, P(X=some point value) is zero and we therefore need a
way to talk about P(X in a specific range). cdfs serve that purpose.

In the continuous case, the cdf or distribution function is defined as:

P(X < x) = F (X < x) =
ˆ X

−∞
f (x) dx (8)
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Random variable theory

f (x) = exp[−(x − µ)2

2σ2 ] (9)

This is the “kernel’ ’ of the normal pdf, and it doesn’t sum to 1:
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Random variable theory

Adding a normalizing constant makes the above kernel density a pdf.
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Random variable theory

Recall that a random variable X is a function X : S → R that associates to
each outcome ω ∈ S exactly one number X (ω) = x . SX is all the x ’s (all
the possible values of X, the support of X). I.e., x ∈ SX .

X is a continuous random variable if there is a non-negative function f
defined for all real x ∈ (−∞,∞) having the property that for any set B of
real numbers,

P{X ∈ B} =
ˆ

B
f (x) dx (10)
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Distributions

if ( !('devtools' %in%
installed.packages()) )

install.packages("devtools")

devtools::install_github("bearloga/tinydensR")

Then, run
library(tinydensR)
univariate_discrete_addin()

or
univariate_continuous_addin()
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Binomial distribution

If we have k successes in n trials, given a success probability p for each trial.
If k ∼ Bin(n, p).

P(k | n, p) =
(

n
k

)
pk(1− p)n−k (11)

The mean is np and the variance np(1− p).

dbinom(k, size, prob, log = FALSE)
### cdf:
pbinom(k, size, prob, lower.tail = TRUE, log.p = FALSE)
### quantiles:
qbinom(p, size, prob, lower.tail = TRUE, log.p = FALSE)
### pseudo-random generation of samples:
rbinom(n, size, prob)

Shravan Vasishth 01 Foundations SMLP 12 / 29



The Poisson distribution

This is a distribution associated with “rare events’ ’, for reasons which will
become clear in a moment. The events might be:

traffic accidents,
typing errors, or
customers arriving in a bank.

For psychology and linguistics, one application is in eye tracking: modeling
number of fixations.
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The Poisson distribution

Let λ be the average number of events in a given time interval [0, 1]. Let
the random variable X count the number of events occurring in the interval.
Then:

fX (x) = P(X = x) = e−λλ
x

x ! , x = 0, 1, 2, . . . (12)

Shravan Vasishth 01 Foundations SMLP 14 / 29



Uniform distribution

A random variable (X ) with the continuous uniform distribution on the
interval (α, β) has PDF

fX (x) =
{ 1
β−α , α < x < β,

0, otherwise
(13)

The associated R function is dunif(min = a, max = b). We write
X ∼ unif(min = a, max = b). Due to the particularly simple form of this
PDF we can also write down explicitly a formula for the CDF FX :
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Uniform distribution

FX (a) =


0, a < 0,
a−α
β−α , α ≤ t < β,

1, a ≥ β.
(14)

E [X ] = β + α

2 and Var(X ) = (β − α)2

12 (15)

dunif(x, min = 0, max = 1, log = FALSE)
punif(q, min = 0, max = 1, lower.tail = TRUE,

log.p = FALSE)
qunif(p, min = 0, max = 1, lower.tail = TRUE,

log.p = FALSE)
runif(n, min = 0, max = 1)
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Normal distribution

fX (x) = 1
σ
√
2π

e
−(x−µ)2

2σ2 , −∞ < x <∞. (16)

We write X ∼ norm(mean = µ, sd = σ), and the associated R function is
dnorm(x, mean = 0, sd = 1).
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Figure 1: Normal distribution.
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Normal distribution

If X is normally distributed with parameters µ and σ2, then Y = aX + b is
normally distributed with parameters aµ+ b and a2σ2.

Standard or unit normal random variable:

If X is normally distributed with parameters µ and σ2, then Z = (X − µ)/σ
is normally distributed with parameters 0, 1.

We conventionally write Φ(x) for the CDF:

Φ(x) = 1√
2π

ˆ x

−∞
e

−y2
2 dy where y = (x − µ)/σ (17)
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Normal distribution

The standardized version of a normal random variable X is used to compute
specific probabilities relating to X .

dnorm(x, mean = 0, sd = 1, log = FALSE)
pnorm(q, mean = 0, sd = 1, lower.tail = TRUE,

log.p = FALSE)
qnorm(p, mean = 0, sd = 1, lower.tail = TRUE,

log.p = FALSE)
rnorm(n, mean = 0, sd = 1)
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Beta distribution

This is a generalization of the continuous uniform distribution.

f (x) =
{ 1

B(a,b)xa−1(1− x)b−1 if 0 < x < 1
0 otherwise

where

B(a, b) =
ˆ 1

0
xa−1(1− x)b−1 dx
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Beta distribution

We write X ∼ beta(shape1 = α, shape2 = β). The associated R function
is =dbeta(x, shape1, shape2)=.

The mean and variance are

E [X ] = a
a + b and Var(X ) = ab

(a + b)2 (a + b + 1)
. (18)
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t distribution

A random variable X with PDF

fX (x) = Γ [(r + 1)/2]√
rπ Γ(r/2)

(
1 + x2

r

)−(r+1)/2

, −∞ < x <∞ (19)

is said to have Student’s t distribution with r degrees of freedom, and we
write X ∼ t(df = r). The associated R functions are dt, pt, qt, and rt,
which give the PDF, CDF, quantile function, and simulate random variates,
respectively.

We will just write:

X ∼ t(µ, σ, r), where r is the degrees of freedom (n− 1), where n is sample
size.
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Jointly distributed random variables
Visualizing bivariate distributions

First, a visual of two uncorrelated normal RVs:

bivn.kde

Y

Z

Simulated bivariate normal density

Figure 2: Visualization of two uncorrelated random variables.

#Biivariate normal distributions

And here is an example of a positively correlated case:

bivn.kde

Y

Z

Simulated bivariate normal density

Figure 3: Visualization of two correlated random variables.
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Bivariate normal distributions
And here is an example with a negative correlation:

bivn.kde

Y

Z

Simulated bivariate normal density

Figure 4: Visualization of two negatively correlated random variables.
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Bivariate normal distributions

Visualizing conditional distributions

You can run the following code to get a visualization of what a conditional
distribution looks like when we take “slices’ ’ from the conditioning random
variable:
for(i in 1:50){

plot(bivn.kde$z[i,1:50],type="l",ylim=c(0,0.1))
Sys.sleep(.5)

}
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Maximum likelihood estimation

Discrete case
Suppose the observed sample values are x1, x2, . . . , xn. The probability of
getting them is

P(X1 = x1,X2 = x2, . . . ,Xn = xn) = f (X1 = x1,X2 = x2, . . . ,Xn = xn; θ)
(20)

i.e., the function f is the value of the joint probability distribution of the
random variables X1, . . . ,Xn at X1 = x1, . . . ,Xn = xn. Since the sample
values have been observed and are fixed, f (x1, . . . , xn; θ) is a function of θ.
The function f is called a likelihood function.
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Maximum likelihood estimation
Continuous case
Here, f is the joint probability density, the rest is the same as above.

Definition

If x1, x2, . . . , xn are the values of a random sample from a population with
parameter θ, the likelihood function of the sample is given by

L(θ) = f (x1, x2, . . . , xn; θ) (21)

for values of θ within a given domain. Here,
f (X1 = x1,X2 = x2, . . . ,Xn = xn; θ) is the joint probability distribution or
density of the random variables X1, . . . ,Xn at X1 = x1, . . . ,Xn = xn.

So, the method of maximum likelihood consists of finding the maximum
point in the likelihood function with respect to θ.
The value of θ that maximizes the likelihood function is the MLE
(maximum likelihood estimate) of θ.
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Finding maximum likelihood estimates
For simplicity consider the case where X ∼ N(µ = 0, σ = 1).
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Figure 5: Maximum likelihood and log likelihood.
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Finding maximum likelihood estimates

Practical implication
Suppose you sample 10 data points:
The sample mean gives you the MLE of µ, and the sample variance gives
you the MLE of σ2:
mean(x)
## [1] 0.1581986
var(x)
## [1] 2.186648
Because the samples will randomly vary from one experiment to another,
this does not mean the the above sample means and variances reflect the
true µ and σ2!
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