
02 Sampling algorithms

Shravan Vasishth

SMLP

Shravan Vasishth 02 Sampling algorithms SMLP 1 / 43

MCMC sampling

The inversion method for sampling
This method works when we know the closed form of the pdf we want to
simulate from and can derive the inverse of that function.
Steps:

1 Sample one number u from Unif (0, 1). Let u = F (z) =
´ z

L f (x) dx
(here, L is the lower bound of the pdf f).

2 Then z = F−1(u) is a draw from f (x).

Shravan Vasishth 02 Sampling algorithms SMLP 2 / 43

Example 1: Samples from Standard Normal

Take a sample from the Uniform(0,1):
u<-runif(1,min=0,max=1)

Let f(x) be a Normal density—we want to sample from this density. The
inverse of the CDF in R is qnorm. It takes as input a probability and returns
a quantile.
qnorm(u)

[1] -2.117653

Shravan Vasishth 02 Sampling algorithms SMLP 3 / 43

Example 1: Samples from Standard Normal

If we do this repeatedly, we will get samples from the Normal distribution
(here, the standard normal).
nsim<-10000
samples<-rep(NA,nsim)
for(i in 1:nsim){
u <- runif(1,min=0,max=1)
samples[i]<-qnorm(u)

}

Shravan Vasishth 02 Sampling algorithms SMLP 4 / 43

Example 1: Samples from Standard Normal

hist(samples,freq=FALSE,
main="Standard Normal")

Standard Normal

samples

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Shravan Vasishth 02 Sampling algorithms SMLP 5 / 43

Example 2: Samples from Exponential or Gamma

Now try this with the exponential with rate 1:
nsim<-10000
samples<-rep(NA,nsim)
for(i in 1:nsim){
u <- runif(1,min=0,max=1)
samples[i]<-qexp(u)

}

Shravan Vasishth 02 Sampling algorithms SMLP 6 / 43

Example 2: Samples from Exponential or Gamma

hist(samples,freq=FALSE,main="Exponential")

Exponential

samples

D
en

si
ty

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

Shravan Vasishth 02 Sampling algorithms SMLP 7 / 43

Example 2: Samples from Exponential or Gamma

Or the Gamma with rate and shape 1:
nsim<-10000
samples<-rep(NA,nsim)
for(i in 1:nsim){
u <- runif(1,min=0,max=1)
samples[i]<-qgamma(u,rate=1,shape=1)

}

Shravan Vasishth 02 Sampling algorithms SMLP 8 / 43

Example 2: Samples from Exponential or Gamma

hist(samples,freq=FALSE,main="Gamma")

Gamma

samples

D
en

si
ty

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

Shravan Vasishth 02 Sampling algorithms SMLP 9 / 43

Example 3

Let f (x) = 1
40(2x + 3), with 0 < x < 5. Now, we can’t just use the family

of q functions in R, because this density is not defined in R.

We have to draw a number from the uniform distribution and then solve for
z, which amounts to finding the inverse function:

u =
ˆ z

0

1
40(2x + 3) (1)

u<-runif(1000,min=0,max=1)

z<-(1/2) * (-3 + sqrt(160*u +9))

This method can’t be used if we can’t find the inverse, and it can’t be used
with multivariate distributions.

Shravan Vasishth 02 Sampling algorithms SMLP 10 / 43

Gibbs sampling
Gibbs sampling is a very commonly used method in Bayesian statistics.
Here is how it works.

Let Θ be a vector of parameter values, let length of Θ be k. Let j index the
j-th iteration.

1 Assign some starting values to Θ:

Θj=0 ← S
2 Set j ← j + 1
3 1. Sample θj

1 | θ
j−1
2 . . . θj−1

k .

2. Sample θj
2 | θ

j
1θ

j−1
3 . . . θj−1

k .
...

k. Sample θj
k | θ

j
1 . . . θ

j
k−1.

4 Return to step 1.

Shravan Vasishth 02 Sampling algorithms SMLP 11 / 43

Example: A simple bivariate distribution

Assume that our bivariate (joint) density is:

f (x , y) = 1
28(2x + 3y + 2) (2)

Using the methods discussed in the Foundations chapter, it is possible to
analytically work out the conditional distributions from the joint distribution:

f (x | y) = f (x , y)
f (y) = (2x + 3y + 2)

6y + 8 (3)

f (y | x) = f (x , y)
f (x) = (2x + 3y + 2)

4y + 10 (4)

Shravan Vasishth 02 Sampling algorithms SMLP 12 / 43

Example: A simple bivariate distribution

The Gibbs sampler algorithm is:
1 Set starting values for the two parameters x = −5, y = −5. Set j=0.
2 Sample x j+1 from f (x | y) using inversion sampling. You need to work

out the inverse of f (x | y) and f (y | x) first. To do this, for f (x | u),
we have find z1:

u =
ˆ z1

0

(2x + 3y + 2)
6y + 8 dx (5)

And for f (y | x), we have to find z2:

u =
ˆ z2

0

(2x + 3y + 2)
4y + 10 dy (6)

Shravan Vasishth 02 Sampling algorithms SMLP 13 / 43

Example: A simple bivariate distribution

x<-rep(NA,2000)
y<-rep(NA,2000)
x[1]<- -5 ## initial values
y[1]<- -5
for(i in 2:2000)
{ #sample from x | y
u<-runif(1,min=0, max=1)
x[i]<-sqrt(u*(6*y[i-1]+8)+(1.5*y[i-1]+1)*(1.5*y[i-1]+1))-
(1.5*y[i-1]+1)

#sample from y | x
u<-runif(1,min=0,max=1)
y[i]<-sqrt((2*u*(4*x[i]+10))/3 +((2*x[i]+2)/3)*((2*x[i]+2)/3))-

((2*x[i]+2)/3)
}

Shravan Vasishth 02 Sampling algorithms SMLP 14 / 43

Example: A simple bivariate distribution

You can run this code (hidden) to visualize the simulated posterior
distribution. See Figure 1.

bi
va

r.k
de

Y

Z

Simulated bivariate density using Gibbs sampling

Figure 1: Example of posterior distribution of a bivariate distribution.

Shravan Vasishth 02 Sampling algorithms SMLP 15 / 43

Example: A simple bivariate distribution

A central insight here is that knowledge of the conditional distributions is
enough to simulate from the joint distribution, provided such a joint
distribution exists.

Shravan Vasishth 02 Sampling algorithms SMLP 16 / 43

Random walk Metropolis

Start at random location θ0 ∈ Θ

For step i = 1, . . . , I
I Propose new location using a “symmetric jumping distribution”
I Calculate

ratio = lik(θi+1)×prior(θi+1)
lik(θi)×prior(θi)

I Generate u ∼ Uniform(0, 1)
I r>u, move from θi to θi+1, else stay at θi

Shravan Vasishth 02 Sampling algorithms SMLP 17 / 43

Random Walk Metropolis

−150 −100 −50 0 50 100

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
Posterior

θ

lik
el

ih
oo

d
x

pr
io

r

Shravan Vasishth 02 Sampling algorithms SMLP 18 / 43

Random Walk Metropolis

−150 −100 −50 0 50 100

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

Propose location to jump to

θ

lik
el

ih
oo

d
x

pr
io

r

Shravan Vasishth 02 Sampling algorithms SMLP 19 / 43

Random Walk Metropolis

−150 −100 −50 0 50 100

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

Calculate ratio of
 proposed/current likxprior

θ

lik
el

ih
oo

d
x

pr
io

r

ratio=0.83

Shravan Vasishth 02 Sampling algorithms SMLP 20 / 43

Random Walk Metropolis

Take a sample u ∼ Uniform(0, 1). Suppose u = 0.90. Since ratio < u,
remain at current position (reject proposal).

−150 −100 −50 0 50 100

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

Calculate ratio of
 proposed/current likxprior

θ

lik
el

ih
oo

d
x

pr
io

r

ratio=0.83

Shravan Vasishth 02 Sampling algorithms SMLP 21 / 43

Random Walk Metropolis

−150 −100 −50 0 50 100

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

Make new proposal,
 compute proposal/original ratio

θ

lik
el

ih
oo

d
x

pr
io

r

ratio=1.33

Shravan Vasishth 02 Sampling algorithms SMLP 22 / 43

Random Walk Metropolis

−150 −100 −50 0 50 100

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

Move to new location because ratio > 1

θ

lik
el

ih
oo

d
x

pr
io

r

ratio=1.33

Shravan Vasishth 02 Sampling algorithms SMLP 23 / 43

Hamiltonian Monte Carlo

Instead of Gibbs sampling or Metropolis etc., Stan uses this more
efficient sampling approach.
HMC works well for the high-dimensional models we will fit
(hierarchical models).
Gibbs sampling faces difficulties with some of the complex hierarchical
models we will be fitting later.
HMC will always succeed for these complex models.

Shravan Vasishth 02 Sampling algorithms SMLP 24 / 43

Hamiltonian Monte Carlo

One limitation of HMC (which Gibbs sampling does not have) is that
HMC only works with continuous parameters (not discrete parameters).

For our purposes, it is enough to know what sampling using MCMC is,
and that HMC gives us posterior samples efficiently.

A good reference explaining HMC is Neal 2011. However, this paper is
technically very demanding.

More intuitively accessible introductions are available via Michael
Betancourt’s home page: https://betanalpha.github.io/. In particular,
this video is helpful: https://youtu.be/jUSZboSq1zg.

Shravan Vasishth 02 Sampling algorithms SMLP 25 / 43

https://betanalpha.github.io/
https://youtu.be/jUSZboSq1zg

Background: Hamiltonian dynamics

Imagine an ice puck moving over a frictionless surface of varying heights.

The puck moves at constant velocity (momentum) k on flat surface
When the puck moves up an incline, it’s kinetic energy goes down, and
its potential energy goes up
When the puck slows down and comes to a halt, kinetic energy
becomes 0.
When the puck slides back, kinetic energy goes up, potential energy
goes down.

See animation.

Shravan Vasishth 02 Sampling algorithms SMLP 26 / 43

Background: Hamiltonian dynamics

The ice puck has

location θ
momentum k

We can describe the dynamics of puck movement in terms of this total
energy equation

Energy(θ, k) = U(θ)
↑

Potential energy

+ KE (k)
↑

Kinetic energy
In classical mechanics, this total energy is called a Hamiltonian, so we can
write:

H(θ, k) = U(θ) + KE (k)

Shravan Vasishth 02 Sampling algorithms SMLP 27 / 43

Background: Hamiltonian dynamics

Potential energy
Define the potential energy of the puck as
U(θ) = − log(p(X |θ)p(θ))
Thus:

U(θ) is defined to be the negative log posterior density
It is defined to be the inverse of the posterior space

Shravan Vasishth 02 Sampling algorithms SMLP 28 / 43

Background: Hamiltonian dynamics

Kinetic energy
Kinetic energy is 1

2mv2

m=mass, v=velocity
Assuming q dimensions, and m=1
KE (k) =

∑q
i=1

k2
i
2

Shravan Vasishth 02 Sampling algorithms SMLP 29 / 43

Background: Hamiltonian dynamics

The evolution of a puck: The equations of motion
Let there be i = 1, . . . , d parameters.
Given the equation:
H(θ, k) = U(θ) + KE (k)
Classical mechanics defines these equations of motion:

position: dθi
dt = δH

δki

momentum: dki
dt = − δH

δθi
These equations define the mapping from state of the puck at time t to
time t + s.

Shravan Vasishth 02 Sampling algorithms SMLP 30 / 43

Simplified algorithm

Choose initial momentum k ∼ N(0,Σ).
Record puck’s current position (value of θ)
Record puck’s momentum, the current value of k
The puck’s position and momentum lead to an accept/reject rule that
yields samples from the posterior with a high probability of acceptance.
The approximate solution to the equations of motion is done using a
modification of Euler’s method.

Shravan Vasishth 02 Sampling algorithms SMLP 31 / 43

HMC demonstration

The HMC algorithm takes as input the log density and the gradient of the
log density. In Stan, these will be computed internally; the user doesn’t
need to do any computations.

For example, suppose the log density is f (θ) = − θ2

2 . Its gradient is
f ′(θ) = −θ. Setting this gradient to 0, and solving for θ, we know that the
maximum is at 0. We know it’s a maximum because the second derivative,
f ′′(θ) = −1, is negative. See Figure 2.

This is the machinery we learnt in the foundations chapter (recall how we
found MLEs in particular).

Shravan Vasishth 02 Sampling algorithms SMLP 32 / 43

HMC demonstration

theta<-seq(-4,4,by=0.001)
plot(theta,-thetaˆ2/2,type="l",main="Log density")

−4 −2 0 2 4

−
8

−
6

−
4

−
2

0

Log density

theta

−
th

et
a^

2/
2

Figure 2: Example log density.

Shravan Vasishth 02 Sampling algorithms SMLP 33 / 43

HMC demonstration

The Radford Neal algorithm for HMC.

Source: Jarad Niemi’s github repository.

Shravan Vasishth 02 Sampling algorithms SMLP 34 / 43

https://github.com/jarad/

HMC demonstration
Radford Neal algorithm:
HMC_neal <- function(U, grad_U, e, L, current_theta) {
theta = current_theta
omega = rnorm(length(theta),0,1)
current_omega = omega
omega = omega - e * grad_U(theta) / 2
for (i in 1:L) {
theta = theta + e * omega
if (i!=L) omega = omega - e * grad_U(theta)
}
omega = omega - e * grad_U(theta) / 2
omega = -omega
current_U = U(current_theta)
current_K = sum(current_omegaˆ2)/2
proposed_U = U(theta)
proposed_K = sum(omegaˆ2)/2
if (runif(1) < exp(current_U-proposed_U+current_K-proposed_K))
{
return(theta)
}
else {
return(current_theta)
}}
HMC <- function(n_reps, log_density, grad_log_density, tuning, initial) {
theta = rep(0, n_reps)
theta[1] = initial$theta
for (i in 2:n_reps) theta[i] = HMC_neal(U = function(x) -log_density(x),
grad_U = function(x) -grad_log_density(x),
e = tuning$e,
L = tuning$L,
theta[i-1])
theta
}

Shravan Vasishth 02 Sampling algorithms SMLP 35 / 43

HMC demonstration

Then, we use the HMC function above to take 2000 samples from the
posterior.

We drop the first few (typically, the first half) samples, which are called
warm-ups. The reason we drop them is that the initial samples may not yet
be sampling from the posterior.

Shravan Vasishth 02 Sampling algorithms SMLP 36 / 43

HMC demonstration

theta <- HMC(n_reps=2000,
log_density=function(x) -xˆ2/2,
grad_log_density=function(x) -x,
tuning=list(e=1,L=1),
initial=list(theta=0))

Shravan Vasishth 02 Sampling algorithms SMLP 37 / 43

HMC demonstration

Figure 3 shows a trace plot, the trajectory of the samples over 2000
iterations.

This is called a chain. When the sampler is correctly sampling from the
posterior, we see a characteristic “fat hairy caterpillar’ ’ shape, and we say
that the sampler has converged. You will see later what a failed
convergence looks like.

Shravan Vasishth 02 Sampling algorithms SMLP 38 / 43

HMC demonstration

plot(theta,type="l",main="Trace plot of posterior samples")

0 500 1000 1500 2000

−
3

−
1

1
2

3

Trace plot of posterior samples

Index

th
et

a

Figure 3: An example of a trace plot.

Shravan Vasishth 02 Sampling algorithms SMLP 39 / 43

HMC demonstration

When we fit Bayesian models, we will always run four parallel chains.

This is to make sure that even if we start with four different initial values
chosen randomly, the chains all end up sampling from the same distribution.

When this happens, we see that the chains overlap visually, and we say that
the chains are mixing.

Shravan Vasishth 02 Sampling algorithms SMLP 40 / 43

HMC demonstration

Figure 4 shows the posterior distribution of θ.

We are not discarding samples here because the sampler converges quickly
in this simple example.

Shravan Vasishth 02 Sampling algorithms SMLP 41 / 43

HMC demonstration
hist(theta, freq=F, 100,

main="Posterior distribution of the parameter.",
xlab=expression(theta))

curve(dnorm, add=TRUE, col='red', lwd=2)
Posterior distribution of the parameter.

θ

D
en

si
ty

−4 −2 0 2

0.
0

0.
2

0.
4

Figure 4: Sampling from the posterior using HMC. The red curve shows the
distribution Normal(0,1).

Shravan Vasishth 02 Sampling algorithms SMLP 42 / 43

HMC demonstration

In the modeling we do in the next part of the course, the Stan software will
do the sampling for us.

Shravan Vasishth 02 Sampling algorithms SMLP 43 / 43

