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Introduction

Bayes’ rule can be written with reference to a specific statistical model M1.
D refers to the data. θ is the parameter, or vector of parameters.

P(θ | D,M1) = P(D | θ,M1)P(θ | M1)
P(D | M1) (1)
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Introduction

P(D | M1) is the likelihood, and is a single number that tells you the
likelihood of the observed data D given the model M1.
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Introduction

Obviously, you would prefer a model that gives a higher likelihood. For
example, and speaking informally, if you have data that were generated
from a Normal(0,1) distribution, then the likelihood of the data given that
µ = 0 will be higher than the likelihood given some other value like µ = 10.
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Introduction

The higher likelihood is telling us that the underlying model is more likely to
have produced the data. So we would prefer the model with the higher
likelihood: we would prefer Normal(0,1) over Normal(10,1) as the presumed
distribution that generated the data.
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Introduction
Assume for simplicity that σ = 1.
## sample 100 iid data points:
x<-rnorm(100)
## compute log likelihood under mu=0
(loglikmu0<-sum(dnorm(x,mean=0,sd=1,log=TRUE)))

## [1] -157.0761

## compute log likelihood under mu=10
(loglikmu10<-sum(dnorm(x,mean=10,sd=1,log=TRUE)))

## [1] -5153.903

## the likelihood ratio is a difference of logliks
## on the log scale:
loglikmu0-loglikmu10

## [1] 4996.827
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Introduction

One way to compare two models M1 and M2 is to use the Bayes factor:

BF12 = P(D | M1)
P(D | M2) (2)

The Bayes factor is similar to the frequentist likelihood ratio test (or
ANOVA), with the difference that in the Bayes factor, the likelihood is
integrated over the parameter space, not maximized (shown below).
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Introduction

How to compute the likelihood? Consider the simple binomial case where we
have a subject answer 10 questions, and they get 9 right. That’s our data.
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Introduction

Discrete example
Assuming a binomial likelihood function, Binomial(n, θ), the two models we
will compare are

M1, the parameter has a point value θ = 0.5 with probability 1 (a very
sharp prior), and
M2, the parameter has a vague prior θ ∼ Beta(1, 1). Recall that this
Beta(1, 1) distribution is Uniform(0, 1).
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Introduction

Discrete example
The likelihood under M1 is:(

n
k

)
θ9(1− θ)1 =

(
10
9

)
0.510 (3)

We already know how to compute this:
(probDataM1<-dbinom(9,p=0.5,size=10))

## [1] 0.009765625

Shravan Vasishth 05 Model comparison and hypothesis testing uding Bayes factorsSeptember 10, 2021 10 / 39



Introduction

Discrete example
The marginal likelihood under M2 involves solving the following integral:

P(D | M2) =
ˆ

P(D | θ,M2)P(θ | M2) dθ (4)

The integral is simply integrating out (“summing over’ ’) all possible values
of the parameter θ.
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Introduction

Discrete example
To see what summing over all possible values means, first consider a
discrete version of this:
suppose we say that our θ can take on only these three values:
θ1 = 0, θ2 = 0.5, θ3 = 1, and each has probability 1/3. Then, the marginal
likelihood of the data given this prior specification of θ would be:

P(D | M) =P(θ1)P(D | θ1) + P(θ2)P(D | θ2) + P(θ3)P(D | θ3)
=
∑

P(D | θi ,M)P(θi | M)
(5)
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Introduction
Discrete example
In our discrete example, this evaluates to:
res<-(1/3)* (choose(10,9)* (0)ˆ9 * (1-0)ˆ1) + (1/3)*
(choose(10,9)* (0.5)ˆ9 * (1-0.5)ˆ1) +
(1/3)* (choose(10,9)* (1)ˆ9 * (1-1)ˆ1)

res

## [1] 0.003255208
This may be easier to read in mathematical form:

P(D | M) =P(θ1)P(D | θ1) + P(θ2)P(D | θ2) + P(θ3)P(D | θ3)

=1
3

((
10
9

)
09(1− 0)1

)
+ 1

3

((
10
9

)
0.59(1− 0.5)1

)

+1
3

((
10
9

)
19(1− 1)1

)
=0.003

(6)
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Introduction

Discrete example
Essentially, we are computing the marginal likelihood P(D | M) by
averaging the likelihood across possible parameter values (here, only three
possible values), with the prior probabilities for each parameter value serving
as a weight.
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Introduction

Discrete example
The Bayes factor for Model 1 vs Model 2 would then be
0.0097/0.003

## [1] 3.233333
Model 1, which assumes that θ has a point value 0.5, is approximately three
times more likely than the Model 2 with the discrete prior over θ
(θ1 = 0, θ2 = 0.5, θ3 = 1, each with probability 1/3).
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Introduction

Continuous example
The integral shown above does essentially the calculation we show above,
but summing over the entire continuous space that is the range of possible
values of θ:

P(D | M2) =
ˆ

P(D | θ,M2)P(θ | M2) dθ (7)
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Introduction

Continuous example
Let’s solve this integral analytically. We need to know only one small detail
from integral calculus:

ˆ b

a
x9 dx =

[
x10

10

]b

a
(8)

Similarly:

ˆ b

a
x10 dx =

[
x11

11

]b

a
(9)

Having reminded ourselves of how to solve this simple integral, we proceed
as follows.
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Introduction

Continuous example
Our prior for θ is Beta(α = 1, β = 1):

P(θ | M2) = Γ(α + β)
Γ(α)Γ(β)θ

α−1θβ−1

= Γ(2)
Γ(1)Γ(1)θ

1−1θ1−1

=1

(10)
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Introduction
Continuous example
So, our integral simplifies to:

P(D | M2) =
ˆ 1

0
P(D | θ,M2) dθ

=
ˆ 1

0

(
10
9

)
θ9(1− θ)1 dθ

=
ˆ 1

0

(
10
9

)
(θ9 − θ10) dθ

=10
[
θ10

10 −
θ11

11

]1

0

=10× 1
110 = 1

11

(11)
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Introduction

Continuous example
So, when Model 1 assumes that the θ parameter is 0.5, and Model 2 has a
vague prior Beta(1, 1) on the θ parameter, our Bayes factor will be:

BF12 = P(D | M1)
P(D | M2) = 0.00977

1/11 = 0.107 (12)
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Introduction

Continuous example
Thus, the model with the vague prior (M2) is about 9 times more likely
than the model with θ = 0.5:

1
0.10742 = 9.309 (13)
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Introduction

Continuous example
We could conclude that we have some evidence against the guessing model
M1 in this case. Jeffreys (1939/1998) has suggested the following decision
criterion using Bayes factors. Here, we are comparing two models, labeled 1
and 2.

BF12 > 100: Decisive evidence
BF12 = 32− 100: Very strong
BF12 = 10− 32: Strong
BF12 = 3− 10: Substantial
BF12 = 2− 3: Not worth more than a bare mention

Do not interpret these as absolute divisions.
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Introduction

Prior sensitivity
The Bayes factor is sensitive to the choice of prior. It is therefore important
to do a sensitivity analysis with different priors.
Read the article Schad et al. (2021).
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Introduction
Prior sensitivity
For the model M2 above, consider the case where we have a prior on θ such
that there are 10 possible values for θ, 0.1, 0.2, 0.3,. . . ,1, and the
probabilities of each value of θ are 1/10.
theta<-seq(0.1,1,by=0.1)
w<-rep(1/10,10)

prob<-rep(NA,length(w))
for(i in 1:length(theta)){
prob[i]<-(w[i])*choose(10,9)*theta[i]ˆ9*(1-theta[i]ˆ1)
}
## Likelihood for model M2 with
## new prior on theta:
sum(prob)

## [1] 0.08287079
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Introduction

Prior sensitivity
Now the Bayes factor for M1 compared to M2 is:
0.0097/sum(prob)

## [1] 0.1170497
Now, model M2 is about 8.5 times more likely compared to model M1:
1/(0.0097/sum(prob))

## [1] 8.543381
This toy example illustrates the effect of prior specification on the Bayes
factor. It is therefore very important to display the Bayes factor under both
uninformative and informative priors for the parameter that we are
interested in.
One should never use a single ‘default’ prior or report a single Bayes
factor. Example: Nicenboim, Vasishth, and Rösler (2020).
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Introduction

The Bayes factor is the ratio of posterior to prior odds
The Bayes factor is really the ratio of posterior odds vs prior odds for any
given pair of models:
BF = posterior odds

prior odds
In the context of our problem:

P(M1 | D)
P(M2 | D)

↑
posterior odds

= P(D | M1)
P(D | M2)

↑
BF12

P(M1)
P(M2)

↑
prior odds

(14)
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Introduction

The Bayes factor is the ratio of posterior to prior odds
So, when the prior odds for M1 vs M2 are 1 (i.e., when both models are a
priori equi-probable), then we are just interested in computing the posterior
odds for the two models.
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Bayes factors with brms

brms has a function for computing Bayes factors:

bayes_factor(m0,m1)
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Bayes factors with brms

Set up data

library(bcogsci)
data("df_gg05_rc")
df_gg05_rc$so<-ifelse(df_gg05_rc$condition=="objgap",1,-1)
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Bayes factors with brms

Define priors for full model

priors <- c(set_prior("normal(6, 0.6)", class = "Intercept"),
set_prior("normal(0.12, 0.04)", class = "b", coef = "so"),
set_prior("normal(0, 0.1)", class = "sd"),
set_prior("normal(0, 0.5)", class = "sigma"),
set_prior("lkj(2)", class = "cor"))
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Bayes factors with brms

brm1 <- brm(RT ~ so +
(1+so|subj) + (1+so|item), df_gg05_rc,

family=lognormal(), prior=priors,
warmup=2000,
iter=10000,
cores=4,
save_pars = save_pars(all = TRUE),
control=list(adapt_delta=0.99, max_treedepth=15))
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Bayes factors with brms

priorsNULL <- c(set_prior("normal(6, 0.6)", class = "Intercept"),
#set_prior("normal(0, 0.05)", class = "b", coef = "so"),
set_prior("normal(0, 0.1)", class = "sd"),
set_prior("normal(0, 0.5)", class = "sigma"),
set_prior("lkj(2)", class = "cor"))
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Bayes factors with brms

brm0 <- brm(RT ~ 1 +
(1+so|subj) + (1+so|item), df_gg05_rc,

family=lognormal(), prior=priorsNULL,
warmup=2000,
iter=10000,
cores=4,
save_pars = save_pars(all = TRUE),
control=list(adapt_delta=0.99, max_treedepth=15))
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Bayes factors with brms

## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6

## Estimated Bayes factor in favor of brm0 over brm1: 0.16363
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Bayes factors with brms

## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6

## Estimated Bayes factor in favor of brm1 over brm0: 5.63373
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Bayes factors with brms

Run the command several times to check stability.
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Class Exercise 1

Refit the above models with a different prior for σ than the one used. Does
the Bayes Factor change when the priors are changed?
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Class Exercise 2

In the above example, how does the Bayes factor change when the prior for
the slope for so is changed to a Normal(0,0.05) to Normal(0,1)?
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