01 Foundations

Shravan Vasishth

SMLP

If necessary, look up the relevant distribution from the course textbook (at the end of the book, there is a list of distributions.)

- 1. We plan to toss a fair coin three times.
- What is the theoretical probability of obtaining
 - 0 heads
 - -1 heads
 - -2 heads
 - 3 heads
- What is the theoretical probability of obtaining
 - -0 or 1 heads
 - 0,1, or 2 heads
 - 0-3 heads?

2. Toss a coin 10 times and count the number of heads and put a tick mark in the relevant column below. If you got four heads, for example, put a tick mark under 4.

Then, compute, using pbinom, the theoretical probability of getting 0, 1, 2, ..., 10 heads, assuming that the coin is fair. Hint: given sample size n, your assumed probability of a heads *prob*, and the number of heads you got x, the pbinom function delivers $P(X \le x)$, the probability of getting x heads or less. In other words, pbinom is the cumulative distribution function.

Note that you have to compute P(X = x)!

Number of heads:	0	1	2	3	4	5	6	7	8	9	10
Theoretical probability:											
Count:											

3. Given $X \sim f(\cdot)$, where $f(\cdot)$ is (a) Unif(0, 10), (b) $N(\mu = 100, \sigma^2 = 20)$, (c) Binom(p = .6, n = 20). Find the probability of P(X < 3), P(X > 11), P(X = 6) for each distribution.

Fill in the table below.

$f(\cdot)$	Prob.	Answer
Uniform(0,10)	P(X < 3) =	
	P(X > 11) =	
	P(X=6) =	
Normal(100,20)	P(X < 3) =	
	P(X > 11) =	
	P(X=6) =	
Binom(p=.6,n=20)	P(X < 3) =	
	P(X > 11) =	
	P(X=6) =	

- 4. A random variable X comes from a LogNormal distribution with mean 6 log milliseconds and standard deviation 2 log ms. Plot this distribution. What is the probability Prob(X < 6) and Prob(X > 6)? What is Prob(2 < X < 8).
- 5. A random variable X comes from a Gamma distribution with mean 100 and standard deviation 10. Find the shape and rate parameters of the Gamma distribution.