
Computational Bayesian data analysis

Bruno Nicenboim / Shravan Vasishth
2020-03-11

1

Bayesian Regression Models using ‘Stan’: brms

Examples 1: A single participant pressing a button repeatedly (A simple
linear model)

Prior predictive distributions

The influence of priors: sensitivity analysis

Posterior predictive distributions

Comparing different likelihoods: The log-normal likelihood
2

• Deriving the posterior distribution analytically is possible for only a
very limited number of cases.

• The denominator, the marginal likelihood, requires us to integrate
the numerator:

𝑝(Θ|𝑦) =
𝑝(𝑦|Θ) ⋅ 𝑝(Θ)

∫Θ 𝑝(𝑦|Θ) ⋅ 𝑝(Θ)𝑑Θ (1)

3

Alternative: Deriving the posterior through sampling

We want to derive the posterior distribution of the Cloze probability of
“umbrella”, 𝜃:
• Data: a word (e.g., “umbrella”) was answered 80 out of 100 times,
• Likelihood: a binomial distribution
• Prior for 𝜃: 𝐵𝑒𝑡𝑎(𝑎 = 4, 𝑏 = 4)

4

We sample from the posterior distribution of 𝜃:
• We use a probabilistic programming language,
• given enough samples we will have a good approximation of the real
posterior distribution,

• say we got 20000 samples from the posterior distribution of the
Cloze probability, 𝜃:

0.712, 0.838, 0.767, 0.743, 0.732, 0.804, 0.738, 0.832, 0.851, 0.816, 0.771, 0.817, 0.721, 0.705, 0.827, 0.808, 0.776, 0.823,
0.786, 0.78, …

5

The approximation of the posterior looks quite similar to the real
posterior.1

0.0

2.5

5.0

7.5

10.0

0.6 0.7 0.8 0.9
theta

de
ns

ity

Figure 1: Histogram of the samples of 𝜃 from the posterior distribution calculated through sampling in gray;
density plot of the exact posterior in red.

1The difference between the true and the approximated mean and variance are 0.0002
and -0.00000003 respectively 6

Computational Bayesian data analysis:

Why now?
• increase in computing power
• appearance of probabilistic programming languages: WinBUGS (Lunn
et al. 2000), JAGS (Plummer 2016), and more recently pymc3
(Salvatier, Wiecki, and Fonnesbeck 2016) and Stan (Carpenter et al.
2017).

Easier alternatives based on Stan:
• rstanarm (Goodrich et al. 2018)
• brms (Bürkner 2019)

7

Bayesian Regression Models
using ‘Stan’: brms

Load the following:

set.seed(42)
library(MASS)
be careful to load dplyr after MASS
library(dplyr)
library(tidyr)
library(purrr)
library(readr)
library(ggplot2)
library(brms)
Save compiled models:
rstan_options(auto_write = TRUE)
Parallelize the chains using all the cores:
options(mc.cores = parallel::detectCores())
library(bayesplot)
library(tictoc)

8

Examples 1: A single participant
pressing a button repeatedly (A
simple linear model)

We have data from a participant repeatedly pressing the space bar as fast
as possible, without paying attention to any stimuli.

Data:
reaction times in milliseconds in each trial

Question:
How long does it take to press a key when there is no decision involved?

9

Assumptions:
1. There is a true underlying time, 𝜇, that the participant needs to press
the space bar.

2. There is some noise in this process.
3. The noise is normally distributed (this assumption is questionable
given that reaction times are generally skewed; we fix this
assumption later).

10

Formal model:

Likelihood for each observation 𝑛:
𝑟𝑡𝑛 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎) (2)

(Bad) priors:
𝜇 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 60000)
𝜎 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 2000)

(3)

11

Fitting the model

We’ll first load the data from data/button_press.csv:
df_noreading_data <-
read_csv("./data/button_press.csv")

df_noreading_data

A tibble: 361 x 2
rt trialn
<dbl> <dbl>
1 141 1
2 138 2
3 128 3
4 132 4
5 126 5
... with 356 more rows

12

ggplot(df_noreading_data, aes(rt)) +
geom_density() +
ggtitle("Button-press data")

0.000

0.005

0.010

0.015

0.020

100 200 300 400
rt

de
ns

ity

Button−press data

Figure 2: Visualizing the data

13

Specifying the model in brms

fit_press <- brm(rt ~ 1,
data = df_noreading_data,
family = gaussian(),
prior = c(

prior(uniform(0, 60000), class = Intercept),
prior(uniform(0, 2000), class = sigma)

),
chains = 4,
iter = 2000,
warmup = 1000

)

14

Sampling and convergence in a nutshell
1. Chains start in random locations;
2. in each iteration they take one sample each;
3. samples at the beginning do not belong to the posterior distribution;
4. eventually, the chains end up in the vicinity of the posterior distribution;
5. from that point onwards the samples will belong to the posterior.

Warm−up

Warm−up

sigma

mu

0 500 1000 1500 2000

0

100

200

300

0

100

200

300

Iteration number

S
am

pl
e

va
lu

e chain

1

2

3

4

Figure 3: Trace plot of the brms model

15

Warm−up

Warm−up

sigma

mu

0 500 1000 1500 2000

0

500

1000

1500

2000

0

500

1000

1500

2000

Iteration number

S
am

pl
e

va
lu

e chain

1

2

3

4

Figure 4: Trace plot of a model that did not converge. 16

Output of brms

posterior_samples(fit_press) %>% str()

'data.frame': 4000 obs. of 3 variables:
$ b_Intercept: num 167 168 171 171 168 ...
$ sigma : num 24.9 25.2 24.3 23.6 25.2 ...
$ lp__ : num -1688 -1688 -1690 -1690 -1688 ...

17

Output of brms

plot(fit_press)

sigma

b_Intercept

22 24 26 28

164 166 168 170 172
0.0

0.1

0.2

0.0

0.1

0.2

0.3

0.4

sigma

b_Intercept

0 200 400 600 800 1000

0 200 400 600 800 1000

164

166

168

170

172

174

22

24

26

28

Chain

1

2

3

4

18

Output of brms
fit_press
posterior_summary(fit_press) is also useful

Family: gaussian
Links: mu = identity; sigma = identity
Formula: rt ~ 1
Data: df_noreading_data (Number of observations: 361)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
##
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat
Intercept 168.66 1.28 166.24 171.20 1.00
Bulk_ESS Tail_ESS
Intercept 3295 2654
##
Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat
sigma 25.00 0.93 23.26 26.91 1.00
Bulk_ESS Tail_ESS
sigma 4184 2769
##
Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

19

Output of brms

Notice that the Estimate is just the mean of the posterior sample, and CI
are the 95% quantiles:
posterior_samples(fit_press)$b_Intercept %>%
mean()

[1] 169

posterior_samples(fit_press)$b_Intercept %>%
quantile(c(0.025, .975))

2.5% 98%
166 171

20

Exercises
3.8.1.1 Fit the model fit_press with just a few of iterations? What happens?

3.8.1.2 Using uniform distributions, choose priors that represent better
your assumptions about reaction times. What happens with the new
model?

21

Important questions

1. What information are the priors encoding? Do the priors
make sense?

2. Does the likelihood assumed in the model make sense
for the data?

22

Prior predictive distributions

Prior predictive distributions

We want to know the density 𝑝(⋅) of data points 𝑦1, … , 𝑛, given a vector of
priors Θ (e.g., Θ = ⟨𝜇, 𝜎⟩)

The prior predictive density is:

𝑝(𝑦1, … , 𝑦𝑛) = ∫ 𝑝(𝑦|Θ) ⋅ 𝑝(𝑦2|Θ) ⋯ 𝑝(𝑦𝑛|Θ)𝑝(Θ) 𝑑Θ (4)

We avoid doing the integration by generating samples from the prior
distribution. We repeat the following:

1. Take one sample from each of the priors.
2. Plug those samples in the likelihood and generate a dataset

𝑦𝑝𝑟𝑒𝑑1
, … , 𝑦𝑝𝑟𝑒𝑑𝑛

. 23

normal_predictive_distribution <- function(mu_samples, sigma_samples, N_obs) {
empty data frame with headers:
df_pred <- tibble(

trialn = numeric(0),
rt_pred = numeric(0),
iter = numeric(0)

)
i iterates from 1 to the length of mu_samples,
which we assume is identical to
the length of the sigma_samples:
for (i in seq_along(mu_samples)) {

mu <- mu_samples[i]
sigma <- sigma_samples[i]
df_pred <- bind_rows(

df_pred,
tibble(

trialn = seq_len(N_obs), # 1, 2,... N_obs
rt_pred = rnorm(N_obs, mu, sigma),
iter = i

)
)

}
df_pred

}

24

This approach works, but it’s quite slow:
tic()
N_samples <- 1000
N_obs <- nrow(df_noreading_data)
mu_samples <- runif(N_samples, 0, 60000)
sigma_samples <- runif(N_samples, 0, 2000)
normal_predictive_distribution(mu_samples = mu_samples,

sigma_samples = sigma_samples,
N_obs = N_obs)

toc()

A tibble: 361,000 x 3
trialn rt_pred iter
<dbl> <dbl> <dbl>
1 1 44587. 1
2 2 48271. 1
3 3 50291. 1
4 4 48784. 1
5 5 49350. 1
... with 3.61e+05 more rows
3.711 sec elapsed 25

A more efficient version:
normal_predictive_distribution_fast <- function(mu_samples,

sigma_samples,
N_obs) {

map_dfr works similarly to lapply, it essentially runs
a for-loop, and builds a dataframe with the output.
We iterate over the values of mu_samples and sigma_samples
simultaneously, and in each iteration we bind a new
data frame with N_obs observations.
map2_dfr(mu_samples, sigma_samples, function(mu, sigma) {

tibble(
trialn = seq_len(N_obs),
rt_pred = rnorm(N_obs, mu, sigma)

)}, .id = "iter") %>%
.id is always a string and needs to be converted to a number
mutate(iter = as.numeric(iter))

}

26

tic()
(prior_pred <- normal_predictive_distribution_fast(

mu_samples = mu_samples,
sigma_samples = sigma_samples,
N_obs))

toc()

A tibble: 361,000 x 3
iter trialn rt_pred
<dbl> <int> <dbl>
1 1 1 48513.
2 1 2 46243.
3 1 3 48812.
4 1 4 49650.
5 1 5 49096.
... with 3.61e+05 more rows
0.339 sec elapsed

27

prior_pred %>%
filter(iter <= 12) %>%
ggplot(aes(rt_pred)) +
geom_histogram() +
facet_wrap(~iter, ncol = 3)

10 11 12

7 8 9

4 5 6

1 2 3

0 20000 40000 60000 0 20000 40000 60000 0 20000 40000 60000

0
100
200
300

0
100
200
300

0
100
200
300

0
100
200
300

rt_pred

co
un

t

Figure 5: Eighteen samples from the prior predictive distribution. 28

Distribution of statistics
(prior_stat <- prior_pred %>%

group_by(iter) %>%
summarize(min_rt = min(rt_pred),

max_rt = max(rt_pred),
average_rt = mean(rt_pred)) %>%

we convert the previous data frame to a long one,
where min_rt, max_rt, average_rt are possible values
of the columns "stat"
pivot_longer(cols = ends_with("rt"),

names_to = "stat",
values_to = "rt"))

A tibble: 3,000 x 3
iter stat rt
<dbl> <chr> <dbl>
1 1 min_rt 43017.
2 1 max_rt 52560.
3 1 average_rt 47753.
4 2 min_rt 13331.
5 2 max_rt 23830.
... with 2,995 more rows

29

prior_stat %>%
ggplot(aes(rt)) +
geom_histogram(binwidth = 500) +
facet_wrap(~stat, ncol = 1)

min_rt

max_rt

average_rt

0 25000 50000

0

5

10

15

0

5

10

15

0

5

10

15

rt

co
un

t

Figure 6: Prior predictive distribution of averages, maximum, and minimum values.

30

Why are our distributions so bad?
We used much less prior information than what we really had: our priors
are clearly not very realistic given what we know about reaction times for
such a button pressing task.

What priors should we have chosen?

31

The influence of priors:
sensitivity analysis

Types of priors

1. Flat uninformative priors: priors as uninformative as possible.

2. Regularizing priors: priors that downweight extreme values (that is,
they provide regularization), they are not very informative, and
mostly let the likelihood dominate in determining the posteriors.

3. Principled priors: priors that encode all (or most of) the
theory-neutral information that we do have.

4. Informative priors: There are cases where we have a lot of prior
knowledge, and not much data.

32

Revisiting the button-pressing example with different priors

What would happen if we use even wider priors for the model?

𝜇 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1010, 1010)
𝜎 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1010)

(5)

In brms:
fit_press_unif <- brm(rt ~ 1,

data = df_noreading_data,
family = gaussian(),
prior = c(

prior(uniform(-10^10, 10^10), class = Intercept),
prior(uniform(0, 10^10), class = sigma))

) 33

The output of the model is virtually identical!
fit_press_unif

Family: gaussian
Links: mu = identity; sigma = identity
Formula: rt ~ 1
Data: df_noreading_data (Number of observations: 361)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
##
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat
Intercept 168.66 1.33 165.98 171.22 1.00
Bulk_ESS Tail_ESS
Intercept 3155 2617
##
Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat
sigma 24.99 0.94 23.27 26.90 1.00
Bulk_ESS Tail_ESS
sigma 3652 2777
##
Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

34

What happens if we use very informative priors and they are off?
𝜇 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(400, 10)
𝜎 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙+(100, 10)

(6)

fit_press_inf <- brm(rt ~ 1,
data = df_noreading_data,
family = gaussian(),
prior = c(

prior(normal(400, 10), class = Intercept),
brms knows that SD needs to be bounded by zero:
prior(normal(100, 10), class = sigma)

)
)

35

Even in this case, the new estimates are just a couple of milliseconds
away from our previous estimates:
fit_press_inf

Family: gaussian
Links: mu = identity; sigma = identity
Formula: rt ~ 1
Data: df_noreading_data (Number of observations: 361)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
##
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat
Intercept 172.94 1.41 170.25 175.72 1.00
Bulk_ESS Tail_ESS
Intercept 2371 2444
##
Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat
sigma 26.08 1.02 24.19 28.23 1.00
Bulk_ESS Tail_ESS
sigma 2361 2269
##
Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

36

This doesn’t mean that priors never matter:

• When there is enough data for a certain parameter, the likelihood
will dominate

• If we are not sure about the extent to which the posterior is
influenced by our priors, we can do a sensitivity analysis (for a
published example in psycholinguistics, see Vasishth et al. 2013).

• We can use prior predictive distributions to see if we are on the right
order of magnitude for our priors

37

Exercises
3.8.2.1 Can you come up with very informative priors that bias the
posterior in a noticeable way (using normally distributed priors)?
Generate and plot prior predictive distributions based on this prior.

38

Posterior predictive distributions

Once we have the posterior distribution 𝑝(Θ ∣ 𝑦), we can derive the
predictions based on this distribution:

𝑝(𝐷𝑝𝑟𝑒𝑑 ∣ 𝑦) = ∫
Θ

𝑝(𝐷𝑝𝑟𝑒𝑑 ∣ Θ)𝑝(Θ ∣ 𝑦) 𝑑Θ (7)

39

We can also here avoid the integration, and we can even use the same
function that we created before:
N_obs <- nrow(df_noreading_data)
mu_samples <- posterior_samples(fit_press)$b_Intercept
sigma_samples <- posterior_samples(fit_press)$sigma
(normal_predictive_distribution_fast(

mu_samples = mu_samples,
sigma_samples = sigma_samples,
N_obs

))

A tibble: 1,444,000 x 3
iter trialn rt_pred
<dbl> <int> <dbl>
1 1 1 214.
2 1 2 135.
3 1 3 194.
4 1 4 123.
5 1 5 158.
... with 1.444e+06 more rows

40

Descriptive adequacy/posterior predictive checks

Could the current data have been generated by our model?

41

pp_check(fit_press, nsamples = 11, type = "hist")

100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400

y

y rep

Figure 7: Eleven samples from the posterior predictive distribution of the model fit_press.

42

pp_check(fit_press, nsamples = 100)

100 200 300 400

y

y rep

Figure 8: Posterior predictive check that shows the fit of the model fit_press in comparison to datasets from
the posterior predictive distribution.

43

Comparing different likelihoods:
The log-normal likelihood

If 𝑦 is log-normally distributed, this means that log(𝑦) is normally
distributed.2

log(𝑦) ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎)
𝑦 ∼ exp(𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎))
𝑦 ∼ 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎)

(8)

The log-normal distribution is again defined using 𝜇 and 𝜎, but these
correspond to the mean and standard deviation of the normally
distributed logarithm of the data 𝑦: log(𝑦).

2In fact, log𝑒(𝑦) or ln(𝑦), but we’ll write it as just 𝑙𝑜𝑔()
44

Re-fitting a single participant pressing a button repeatedly with a
log-normal likelihood

New likelihood:
𝑟𝑡𝑛 ∼ 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎) (9)

New scale for the priors:
𝜇 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 8)
𝜎 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1)

(10)

45

Because the parameters are in a different scale than the dependent
variable, their interpretation changes:

• The location, 𝜇: In our previous linear model, 𝜇 represented the
grand mean (or the grand median, or grand mode, since in a normal
distribution the three coincide). But now, the grand mean is
exp(𝜇 + 𝜎2/2) and the grand median is exp(𝜇).

• The scale, 𝜎: This is the standard deviation of the normal distribution
of log(𝑦). The standard deviation of a log-normal distribution with
location 𝜇 and shape 𝜎 will be exp(𝜇 + 𝜎2/2) × √(exp(𝜎2) − 1).

46

Prior predictive distributions

N_samples <- 1000
N_obs <- nrow(df_noreading_data)
mu_samples <- runif(N_samples, 0, 8)
sigma_samples <- runif(N_samples, 0, 1)
prior_pred_ln <- exp(normal_predictive_distribution_fast(

mu_samples = mu_samples,
sigma_samples = sigma_samples,
N_obs

))

47

Distribution of statistics
(prior_pred_stat_ln <-

prior_pred_ln %>%
group_by(iter) %>%
summarize(

min_rt = min(rt_pred),
max_rt = max(rt_pred),
average_rt = mean(rt_pred),
median_rt = median(rt_pred)

) %>%
pivot_longer(cols = ends_with("rt"), names_to = "stat", values_to = "rt"))

A tibble: 2,840 x 3
iter stat rt
<dbl> <chr> <dbl>
1 2.72 min_rt 106.
2 2.72 max_rt 154.
3 2.72 average_rt 130.
4 2.72 median_rt 131.
5 7.39 min_rt 2.99
... with 2,835 more rows

48

prior_pred_stat_ln %>%
ggplot(aes(rt)) +
scale_x_continuous("Reaction times in ms",

trans = "log", breaks = c(0.001, 1, 100, 1000, 10000, 100000)) +
geom_histogram() +
facet_wrap(~stat, ncol = 1)

min_rt

median_rt

max_rt

average_rt

1 100 1000 10000 100000

0
20
40
60

0
20
40
60

0
20
40
60

0
20
40
60

Reaction times in ms

co
un

t

Figure 9: Prior predictive distribution of averages, maximum, and minimum value of the log-normal model;
the x-axis is log-transformed.

We cannot not generate negative values anymore, since exp(any
number) > 0

49

Better regularizing priors for the log-normal model

𝑟𝑡𝑛 ∼ 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎) (11)

𝜇 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(6, 1.5)
𝜎 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙+(0, 1)

(12)

50

Median effect for our new priors:
c(

lower = exp(6 - 2 * 1.5),
higher = exp(6 + 2 * 1.5)

)

lower higher
20 8103

51

Prior predictive distributions
N_samples <- 1000
N_obs <- nrow(df_noreading_data)
mu_samples <- rnorm(N_samples, 6, 1.5)
sigma_samples <- rtnorm(N_samples, 0, 1, a = 0)
(prior_pred_ln_better <- exp(normal_predictive_distribution_fast(

mu_samples = mu_samples,
sigma_samples = sigma_samples,
N_obs

)))

A tibble: 361,000 x 3
iter trialn rt_pred
<dbl> <dbl> <dbl>
1 2.72 2.72 261.
2 2.72 7.39 248.
3 2.72 20.1 441.
4 2.72 54.6 841.
5 2.72 148. 2975.
... with 3.61e+05 more rows 52

(prior_pred_stat_better_ln <- prior_pred_ln_better %>%
group_by(iter) %>%
summarize(

min_rt = min(rt_pred),
max_rt = max(rt_pred),
average_rt = mean(rt_pred),
median_rt = median(rt_pred)

) %>%
pivot_longer(

cols = ends_with("rt"),
names_to = "stat", values_to = "rt"

))

A tibble: 2,840 x 3
iter stat rt
<dbl> <chr> <dbl>
1 2.72 min_rt 4.33
2 2.72 max_rt 9351.
3 2.72 average_rt 734.
4 2.72 median_rt 344.
5 7.39 min_rt 23.8
... with 2,835 more rows

53

prior_pred_stat_better_ln %>% ggplot(aes(rt)) +
scale_x_continuous(trans = "log",

breaks = c(0.001, 1, 100, 1000, 10000, 100000)) +
geom_histogram() +
facet_wrap(~stat, ncol = 1) +
coord_cartesian(xlim = c(0.001, 300000))

min_rt

median_rt

max_rt

average_rt

0.001 1.000 100.000 1000.000 10000.000 100000.000

0
50

100
150

0
50

100
150

0
50

100
150

0
50

100
150

rt

co
un

t

Figure 10: Prior predictive distribution of averages, maximum, and minimum value of the log-normal model
with better priors.

54

brms model with reasonable priors:3
fit_press_ln <- brm(rt ~ 1,

data = df_noreading_data,
family = lognormal(),
prior = c(

prior(normal(6, 1.5), class = Intercept),
prior(normal(0, 1), class = sigma)

)
)

3Notice that we need to specify that the family is lognormal()

55

fit_press_ln

Family: lognormal
Links: mu = identity; sigma = identity
Formula: rt ~ 1
Data: df_noreading_data (Number of observations: 361)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
##
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat
Intercept 5.12 0.01 5.10 5.13 1.00
Bulk_ESS Tail_ESS
Intercept 3976 2869
##
Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat
sigma 0.13 0.01 0.13 0.15 1.00
Bulk_ESS Tail_ESS
sigma 3362 2436
##
Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

56

How long does it take to press the space bar in milliseconds?
estimate_ms <- exp(posterior_samples(fit_press_ln)$b_Intercept)
c(mean = mean(estimate_ms), quantile(estimate_ms, probs = c(.025, .975)))

mean 2.5% 98%
167 165 169

57

Posterior predictive checks
pp_check(fit_press_ln, nsamples = 100)

100 200 300 400

y

y rep

Figure 11: Posterior predictive distribution of fit_noreading_ln
58

Are the posterior predicted data now more similar to the real data,
compared to the case where we had a Normal likelihood?

We suspect that the normal distribution would generate reaction times
that are too fast (since it’s symmetrical) and that the log-normal
distribution may capture the long tail better than the normal model.

59

pp_check(fit_press, type = "stat", stat = "min") +
ggtitle("Normal model")

pp_check(fit_press_ln, type = "stat", stat = "min") +
ggtitle("Log-normal model")

60 80 100 120

T = min
T(y rep)

T(y)

Normal model

90 100 110 120 130

T = min
T(y rep)

T(y)

Log−normal model

Figure 12: Distribution of minimum values in a posterior predictive check. The minimum in the data is 110 ms. 60

pp_check(fit_press, type = "stat", stat = "max") +
ggtitle("Normal model")

pp_check(fit_press_ln, type = "stat", stat = "max") +
ggtitle("Log-normal model")

250 300 350 400

T = max
T(y rep)

T(y)

Normal model

200 250 300 350 400

T = max
T(y rep)

T(y)

Log−normal model

Figure 13: Distribution of maximum values in a posterior predictive check. The maximum in the data is 409 ms. 61

Exercises
3.8.3.1 Generate posterior predictive distributions based on the previous
model (3.8.2.1) and plot them.

3.8.3.2 For the log-normal model fit_press_ln, change the prior of 𝜎 so
that it is a lognormal distribution with location (𝜇) of −2 and scale (𝜎) of
.5. What is the meaning of this prior? Is it a good prior? Generate and
plot prior predictive distributions. Do the new estimates change when
you fit the model?

3.8.3.3 For the log-normal model, what is the mean (rather than median)
time that takes to press the space bar, what is the standard deviation of
the reaction times in milliseconds?

….

62

3.8.3.4 Would it make sense to use a “skew normal distribution” instead
of the lognormal? The skew normal distribution has three parameters
location 𝜉, scale 𝜔, and shape 𝛼. The distribution is right skewed if 𝛼 > 0,
is left skewed if 𝛼 < 0, and is identical to the regular normal distribution
if 𝛼 = 0. For fitting this in brms, one needs to change family and set it to
skew_normal(), and add a prior of class = alpha (location remains
class = Intercept and scale, class = sigma).

• Fit this model with a prior that assigns approximately 95% of the
prior probability mass of alpha to be between 0 and 10.

• Generate posterior predictive distributions and compare the
posterior distribution of summary statistics of the skew normal with
the normal and log-normal

63

What did we do?

• fitted and interpreted a normal model
• looked at the effect of priors:

• prior predictive distributions
• sensitivity analysis

• looked at the fit of the posterior:
• posterior predictive distribution (descriptive adequacy)

• fitted and interpreted a log-normal model
• compared a normal model with a log-normal one

64

References

Bürkner, Paul-Christian. 2019. Brms: Bayesian Regression Models Using
’Stan’. https://CRAN.R-project.org/package=brms.

Carpenter, Bob, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben
Goodrich, Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and
Allen Riddell. 2017. “Stan: A Probabilistic Programming Language.”
Journal of Statistical Software 76 (1). Columbia Univ., New York, NY (United
States); Harvard Univ., Cambridge, MA (United States).

Goodrich, Ben, Jonah Gabry, Imad Ali, and Sam Brilleman. 2018.
“Rstanarm: Bayesian Applied Regression Modeling via Stan.”
http://mc-stan.org/.

Lunn, D.J., A. Thomas, N. Best, and D. Spiegelhalter. 2000. “WinBUGS-A
Bayesian Modelling Framework: Concepts, Structure, and Extensibility.”
Statistics and Computing 10 (4). Springer: 325–37.

Plummer, Martin. 2016. “JAGS Version 4.2.0 User Manual.”

Salvatier, John, Thomas V. Wiecki, and Christopher Fonnesbeck. 2016.
“Probabilistic Programming in Python Using PyMC3.” PeerJ Computer
Science 2 (April). PeerJ: e55. https://doi.org/10.7717/peerj-cs.55.

Vasishth, Shravan, Zhong Chen, Qiang Li, and Gueilan Guo. 2013.
“Processing Chinese Relative Clauses: Evidence for the Subject–Relative
Advantage.” PLOS ONE 8 (10): e77006.
https://doi.org/10.1371/journal.pone.0077006.

65

https://CRAN.R-project.org/package=brms
http://mc-stan.org/
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.1371/journal.pone.0077006

	Bayesian Regression Models using `Stan': brms
	Examples 1: A single participant pressing a button repeatedly (A simple linear model)
	Prior predictive distributions
	The influence of priors: sensitivity analysis
	Posterior predictive distributions
	Comparing different likelihoods: The log-normal likelihood

