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A first linear model: Does attentional load affect pupil size?

Log-normal model: Does trial affect reaction times?

Logistic regression: Does set size affect free recall?
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A first linear model: Does
attentional load affect pupil size?



Data:
One participant’s pupil size of the control experiment of Wahn et al.
(2016) averaged by trial

Task:
A participant covertly tracked between zero and five objects among
several randomly moving objects on a computer screen; multiple object
tracking–MOT– (Pylyshyn and Storm 1988) task

Research question:
How does the number of moving objects being tracked (attentional load)
affect pupil size?
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Figure 1: Flow of events in a trial where two objects needs to be tracked. Adapted from Blumberg, Peterson,
and Parasuraman (2015); licensed under CC BY 4.0.
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Assumptions:
1. There is some average pupil size represented by 𝛼.
2. The increase of attentional load has a linear relationship with pupil
size, determined by 𝛽.

3. There is some noise in this process, that is, variability around the
true pupil size i.e., a scale, 𝜎.

4. The noise is normally distributed.
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Formal model

Likelihood for each observation 𝑛:
𝑝_𝑠𝑖𝑧𝑒𝑛 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝛼 + 𝑐_𝑙𝑜𝑎𝑑𝑛 ⋅ 𝛽, 𝜎) (1)

where 𝑛 indicates the observation number with 𝑛 = 1 … 𝑁
How do we decide on priors?
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Priors

• pupil sizes range between 2 and 5 millimeters,
• but the Eyelink-II eyetracker measures the pupils in arbitrary units
(Hayes and Petrov 2016)

• we either need estimates from a previous analysis or look at some
measures of pupil sizes
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Pilot data:
Some measurements of the same participant with no attentional load for
the first 100ms, each 10 ms, in pupil_pilot.csv:
df_pupil_pilot <- read_csv("./data/pupil_pilot.csv")
df_pupil_pilot$p_size %>% summary()

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 852 856 862 861 866 868
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Prior for 𝛼

𝛼 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(1000, 500) (2)

Meaning:
We expect that the average pupil size for the average load in the
experiment would be in a 95% central interval limited by approximately
1000 ± 2 ⋅ 500 = [20, 2000] units:
c(qnorm(.025, 1000, 500), qnorm(.975, 1000, 500))

## [1] 20 1980
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Prior for 𝜎

𝜎 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙+(0, 1000) (3)

Meaning:
We expect that the standard deviation of the pupil sizes should be in the
following 95% interval.
c(
qtnorm(.025, 0, 1000, a = 0),
qtnorm(.975, 70, 1000, a = 0)

)

## [1] 31 2290
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Prior for 𝛽

𝛽 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 100) (4)

Meaning:
We don’t really know if the attentional load will increase or even decrease
the pupil size, but we are only saying that one unit of load will potentially
change the pupil size consistently with the following 95% interval:
c(qnorm(.025, 0, 100), qnorm(.975, 0, 100))

## [1] -196 196
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Fitting the model

df_pupil_data <- read_csv("data/pupil.csv")
df_pupil_data <- df_pupil_data %>%

mutate(c_load = load - mean(load))
df_pupil_data

## # A tibble: 41 x 4
## trial load p_size c_load
## <dbl> <dbl> <dbl> <dbl>
## 1 1 2 1021. -0.439
## 2 2 1 951. -1.44
## 3 3 5 1064. 2.56
## 4 4 4 913. 1.56
## 5 5 0 603. -2.44
## # ... with 36 more rows
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Specifying the model in brms

fit_pupil <- brm(p_size ~ 1 + c_load,
data = df_pupil_data,
family = gaussian(),
prior = c(

prior(normal(1000, 500), class = Intercept),
prior(normal(0, 1000), class = sigma),
prior(normal(0, 100), class = b, coef = c_load)

)
)
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plot(fit_pupil)
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fit_pupil

## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: p_size ~ 1 + c_load
## Data: df_pupil_data (Number of observations: 41)
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup samples = 4000
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 701.53 20.10 662.27 742.58 1.00 3702 2751
## c_load 33.80 11.73 10.84 56.84 1.00 4126 2779
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 128.45 15.29 102.54 161.65 1.00 3066 2814
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
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How to communicate the results?

Research question:
“What is the effect of attentional load on the participant’s pupil size?”

We’ll need to examine what happens with 𝛽 (c_load):
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How to communicate the results?

• The most likely values of 𝛽 will be around the mean of the posterior,
33.8, and we can be 95% certain that the true value of 𝛽 given the
model and the data lies between 10.84 and 56.84.

• We see that as the attentional load increases, the pupil size of the
participant becomes larger.
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How likely it is that the pupil size increased rather than decreased?
mean(posterior_samples(fit_pupil)$b_c_load > 0)

## [1] 1

Take into account that this probability ignores the possibility of the
participant not being affected at all by the manipulation, this is because
𝑃(𝛽 = 0) = 0.
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Descriptive adequacy

# we start from an array of 1000 samples by 41 observations
df_pupil_pred <- posterior_predict(fit_pupil, nsamples = 1000) %>%

# we convert it to a list of length 1000, with 41 observations in each element:
array_branch(margin = 1) %>%
# We iterate over the elements (the predicted distributions)
# and we convert them into a long data frame similar to the data,
# but with an extra column `iter` indicating from which iteration
# the sample is coming from.
map_dfr(function(yrep_iter) {

df_pupil_data %>%
mutate(p_size = yrep_iter)

}, .id = "iter") %>%
mutate(iter = as.numeric(iter))
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df_pupil_pred %>% filter(iter < 100) %>%
ggplot(aes(p_size, group=iter)) +

geom_line(alpha = .05, stat="density", color = "blue") +
geom_density(data=df_pupil_data, aes(p_size), inherit.aes = FALSE, size =1)+
geom_point(data=df_pupil_data, aes(x=p_size, y = -0.001), alpha =.5, inherit.aes = FALSE) +
coord_cartesian(ylim=c(-0.002, .01))+ facet_grid(load ~ .)
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Figure 2: The plot shows 100 predicted distributions in blue density plots, the distribution of pupil size data in
black density plots, and the observed pupil sizes in black dots for the five levels of attentional load. 20



Distribution of statistics
# predicted means:
df_pupil_pred_summary <- df_pupil_pred %>%

group_by(iter, load) %>%
summarize(av_p_size = mean(p_size))

# observed means:
(df_pupil_summary <- df_pupil_data %>%

group_by(load) %>%
summarize(av_p_size = mean(p_size)))

## # A tibble: 6 x 2
## load av_p_size
## <dbl> <dbl>
## 1 0 561.
## 2 1 719.
## 3 2 715.
## 4 3 691.
## 5 4 740.
## # ... with 1 more row
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ggplot(df_pupil_pred_summary, aes(av_p_size)) +
geom_histogram(alpha = .5) +
geom_vline(aes(xintercept = av_p_size), data = df_pupil_summary) +
facet_grid(load ~ .)
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Figure 3: Distribution of posterior predicted means in gray and observed pupil size means in black lines by
load.
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• the observed means for no load and for a load of two are falling in
the tails of the distributions.

• the data might be indicating that the relevant difference is between
(i) no load, (ii) a load between two and three, and then (iii) a load of
four, and (iv) of five.

• but beware of overinterpreting noise.
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Value of posterior predictive distributions

• If we look hard enough, we’ll find failures of descriptive adequacy.1
• Posterior predictive accuracy can be used to generate new
hypotheses and to compare different models.

1all models are wrong
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Exercises
4.6.1.1 Our priors for this experiment were quite arbitrary. How do the
prior predictive distributions look like? Do they make sense?

4.6.1.2 Is our posterior distribution sensitive to the priors that we
selected? Perform a sensitivity analysis to find out whether the posterior
is affected by our choice of prior for the 𝜎.
4.6.1.3 Our dataset includes also a column that indicates the trial number.
Could it be that trial has also an effect on the pupil size? As in lm, we
indicate another main effect with a + sign. How would you communicate
the new results?
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Log-normal model: Does trial
affect reaction times?



We revisit the small experiment, where a participant repeatedly pressed
the space bar as fast as possible, without paying attention to the stimuli.

New research question:
Does the participant tend to speedup (practice effect) or slowdown
(fatigue effect)?

26



Formal model

Likelihood:
𝑟𝑡𝑛 ∼ 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(𝛼 + 𝑐_𝑡𝑟𝑖𝑎𝑙𝑛 ⋅ 𝛽, 𝜎) (5)

Priors
𝛼 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(6, 1.5)
𝜎 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙+(0, 1)
𝛽 ∼ …

(6)
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Prior for 𝛽

𝛽 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1) (7)
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We edit our normal_predictive_distribution_fast from section and
make it log-normal and dependent on trial:
lognormal_model_pred <- function(alpha_samples,

beta_samples,
sigma_samples,
N_obs) {

# pmap extends map2 (and map) for a list of lists:
pmap_dfr(list(alpha_samples, beta_samples, sigma_samples),

function(alpha, beta, sigma) {
tibble(

trialn = seq_len(N_obs),
# we center trial:
c_trial = trialn - mean(trialn),
# we change the likelihood:
# Notice rlnorm and the use of alpha and beta
rt_pred = rlnorm(N_obs, alpha + c_trial * beta, sigma))

}, .id = "iter") %>%
# .id is always a string and needs to be converted to a number

mutate(iter = as.numeric(iter))}

29



This is our first attempt for a prior predictive distribution:
N_obs <- 361
N <- 800
alpha_samples <- rnorm(N, 6, 1.5)
sigma_samples <- rtnorm(N, 0, 1, a = 0)
beta_samples <- rnorm(N, 0, 1)
prior_pred <- lognormal_model_pred(

alpha_samples = alpha_samples,
beta_samples = beta_samples,
sigma_samples = sigma_samples,
N_obs = N_obs

)
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(median_effect <-
prior_pred %>%
group_by(iter) %>%
mutate(diff = rt_pred - lag(rt_pred)) %>%
summarize(

median_rt = median(diff, na.rm = TRUE)
))

## # A tibble: 800 x 2
## iter median_rt
## <dbl> <dbl>
## 1 1 1.40e- 5
## 2 2 2.12e-15
## 3 3 -6.36e- 1
## 4 4 -5.69e+ 0
## 5 5 -1.81e-16
## # ... with 795 more rows
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median_effect %>%
ggplot(aes(median_rt)) +
geom_histogram()
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Figure 4: Prior predictive distribution of the median effect of the log-normal model with 𝛽 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1). 32



Another prior for 𝛽

𝛽 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, .01) (8)
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Figure 5: Prior predictive distribution of the median effect of the log-normal model with 𝛽 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, .01).
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Prior selection

Prior selection might look daunting and a lot of work. However…

• priors can be informed by the estimates from previous experiments;
• this work is usually done only the first time we encounter an
experimental paradigm;

• we will generally use very similar (or identical priors) for analyses
dealing with the same type of task;

• when in doubt, do a sensitivity analysis.
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Fitting the model

df_noreading_data <- read_csv("./data/button_press.csv")
df_noreading_data <- df_noreading_data %>%

mutate(c_trial = trialn - mean(trialn))
fit_press_trial <- brm(rt ~ 1 + c_trial,

data = df_noreading_data,
family = lognormal(),
prior = c(

prior(normal(6, 1.5), class = Intercept),
prior(normal(0, 1), class = sigma),
prior(normal(0, .01), class = b, coef = c_trial)

)
)
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posterior_summary(fit_press_trial)[, c("Estimate", "Q2.5", "Q97.5")]

## Estimate Q2.5 Q97.5
## b_Intercept 5.11844 5.1058 5.13064
## b_c_trial 0.00052 0.0004 0.00065
## sigma 0.12330 0.1147 0.13295
## lp__ -1603.65601 -1606.7664 -1602.27805
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plot(fit_press_trial)
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How to communicate the results?

We focus on the effect of trial:
• ̂𝛽 = 0.00052, 95% CrI = [0.0004, 0.00065].
• But in most cases, the effect is easier to interpret in milliseconds.
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We calculate an estimate if we consider the difference between reaction
times in a trial at the middle of the experiment (when the centered trial
number is zero) and the previous one (when the centered trial number is
minus one).
alpha_samples <- posterior_samples(fit_press_trial)$b_Intercept
beta_samples <- posterior_samples(fit_press_trial)$b_c_trial
effect_middle_ms <- exp(alpha_samples) -

exp(alpha_samples - 1 * beta_samples)
## ms effect in the middle of the expt (mean trial vs. mean trial - 1 )
c(mean = mean(effect_middle_ms), quantile(effect_middle_ms, c(.025, .975)))

## mean 2.5% 98%
## 0.087 0.067 0.109
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Alternatively we consider the difference between the second trial and the
first one:
first_trial <- min(df_noreading_data$c_trial)
second_trial <- min(df_noreading_data$c_trial) + 1
effect_beginning_ms <- exp(alpha_samples + second_trial * beta_samples) -

exp(alpha_samples + first_trial * beta_samples)
## ms effect from first to second trial:
c(mean = mean(effect_beginning_ms), quantile(effect_beginning_ms, c(.025, .975)))

## mean 2.5% 98%
## 0.080 0.062 0.097

There is a slowdown in both cases.
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Reporting results

We can
• present the posterior mean and the 95% credible interval;
• assess if the observed estimates are consistent with the prediction
from our theory;

• assess the practical relevance of the effect for the research question;
(only after 100 button presses we see a slowdown of 9 ms on average
(0.09 ⋅ 100), with a 95% credible interval ranging from 6.7 to 10.86);

• establish the presence or absence of an effect (Bayes factor)
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Exercises
4.6.2.1 Estimate the slowdown in milliseconds between the last two times
the subject pressed the space bar in the experiment.

4.6.2.2 How would you change your model (keeping the log-normal
likelihood) so that it includes centered log-transformed trial numbers or
square-root-transformed trial numbers (instead of centered trial
numbers)? Does the effect in milliseconds change?
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Logistic regression: Does set size
affect free recall?



We’ll look at the capacity limit of working memory to illustrate one
special case of GLMs, logistic regression.

Subset of the data of Oberauer (2019):

Data One participants recall success (1 success, 0 failure)

Task: word lists of varying lengths (2, 4, 6, and 8 elements** were
presented, and the participant was asked to recall a word given its
position on the list

Research question: How does the number of items to be held in working
memory affects recall accuracy?
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Figure 6: Flow of events in a trial with memory set size 4 and free recall. Adapted from Oberauer (2019);
licensed under CC BY 4.0.
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df_recall_data <- read_csv("./data/PairsRSS1_all.csv") %>%
# We ignore the type of incorrect responses (the focus of the paper)
mutate(correct = if_else(response_category == 1, 1, 0)) %>%
# and we only use the data from the free recall task:
# (when there was no list of possible responses)
filter(response_size_list + response_size_new_words == 0) %>%
# We select one subject
filter(subject == 10) %>%
mutate(c_set_size = set_size - mean(set_size)) %>%
select(subject, set_size, c_set_size, correct, trial)
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# Set sizes in the dataset:
df_recall_data$set_size %>%

unique()

## [1] 4 8 2 6
# Trials by set size
df_recall_data %>%

group_by(set_size) %>%
count()

## # A tibble: 4 x 2
## # Groups: set_size [4]
## set_size n
## <dbl> <int>
## 1 2 23
## 2 4 23
## 3 6 23
## 4 8 23
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df_recall_data

## # A tibble: 92 x 5
## subject set_size c_set_size correct trial
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 10 4 -1 1 1
## 2 10 8 3 0 4
## 3 10 2 -3 1 9
## 4 10 6 1 1 23
## 5 10 4 -1 1 5
## # ... with 87 more rows
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The likelihood for the logistic regression model

Recall that the Bernoulli likelihood generates a 0 or 1 response with a
particular probability 𝜃 (here N = 10 trials with 50% chances of getting a
one):
# We use as.numeric to get zeros and ones rather than FALSE and TRUE
rbernoulli(n = 10, p = 0.5) %>% as.numeric()

## [1] 1 0 1 0 1 1 0 0 0 0
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Formal model

The likelihood for each observation 𝑛:

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜃𝑛) (9)

• 𝜃𝑛 is bounded to be between 0 and 1

How do we fit a regression model?
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The generalized linear modeling framework

• A link function 𝑔(⋅) connects the linear model (real numbers ranging
from (−∞, +∞)) to the quantity to be estimated (here, the
probabilities 𝜃𝑛 in [0, 1]).

• A (common) link function in this case is the logit link:

𝜂𝑛 = 𝑔(𝜃𝑛) = log ( 𝜃𝑛
1 − 𝜃𝑛

) (10)
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Formal model

The likelihood for each observation 𝑛:

𝜂𝑛 = log ( 𝜃𝑛
1 − 𝜃𝑛

) = 𝛼 + 𝛽 ⋅ 𝑐_𝑠𝑒𝑡_𝑠𝑖𝑧𝑒 (11)

𝜃𝑛 = 𝑔−1(𝜂𝑛) = log ( exp(𝜂𝑛)
1 + exp(𝜂𝑛)) (12)

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜃𝑛) (13)

52



Priors for logistic regression

• 𝛼 represents the log-odds of correctly recalling one word in a
random position for the average set size of five (because we
centered the predictor and since 5 = 2+4+6+8

4 ). (It’s telling us how
difficult the task is. Let’s assume (a 50/50 chance) with a great deal
of uncertainty:

We use qlogis(p) for the inverse logit or logistic function:
qlogis(.5)

## [1] 0
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Prior for 𝛼

𝛼 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 4) (14)
samples_logodds <- tibble(alpha = rnorm(100000, 0, 4))
samples_prob <- tibble(p = plogis(rnorm(100000, 0, 4)))
ggplot(samples_logodds, aes(alpha)) + geom_density()
ggplot(samples_prob, aes(p)) + geom_density()
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Figure 8: Prior for 𝛼 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 4) in log-odds and in probability space.
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Prior for 𝛼

We try with:

𝛼 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1.5) (15)
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Prior for 𝛽

• 𝛽 represents the effect in log-odds of increasing the set size.

(a) 𝛽 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1)
(b) 𝛽 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, .5)
(c) 𝛽 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, .1)
(d) 𝛽 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, .01)
(e) 𝛽 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, .001)
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Edited version of the earlier normal_predictive_distribution_fast:
logistic_model_pred <- function(alpha_samples,

beta_samples,
set_size,
N_obs) {

map2_dfr(alpha_samples, beta_samples,
function(alpha, beta) {

tibble(set_size = set_size,
# we center size:

c_set_size = set_size - mean(set_size),
# change the likelihood:
# Notice the use of a link function for alpha and beta

theta = plogis(alpha + c_set_size * beta),
correct_pred = rbernoulli(N_obs, p = theta))

}, .id = "iter") %>%
# .id is always a string and needs to be converted to a number

mutate(iter = as.numeric(iter))
}
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Let’s assume 800 observations with 200 observation of each set size:
N_obs <- 800
set_size <- rep(c(2, 4, 6, 8), 200)

We iterate over the four possible standard deviations of 𝛽:
alpha_samples <- rnorm(1000, 0, 1.5)
sds_beta <- c(1, 0.5, 0.1,0.01, 0.001)
prior_pred <- map_dfr(sds_beta, function(sd) {

beta_samples <- rnorm(1000, 0, sd)
logistic_model_pred(alpha_samples = alpha_samples,

beta_samples = beta_samples,
set_size = set_size,
N_obs = N_obs) %>%

mutate(prior_beta_sd = sd)
})
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And we calculate the accuracy for each one of the priors we want to
examine, for each iteration, and for each set size.
(mean_accuracy <- prior_pred %>%

group_by(prior_beta_sd, iter, set_size) %>%
summarize(accuracy = mean(correct_pred)) %>%
mutate(prior = paste0("Normal(0, ",prior_beta_sd,")")))

## # A tibble: 20,000 x 5
## # Groups: prior_beta_sd, iter [5,000]
## prior_beta_sd iter set_size accuracy prior
## <dbl> <dbl> <dbl> <dbl> <chr>
## 1 0.001 1 2 0.255 Normal(0, 0.001)
## 2 0.001 1 4 0.27 Normal(0, 0.001)
## 3 0.001 1 6 0.24 Normal(0, 0.001)
## 4 0.001 1 8 0.255 Normal(0, 0.001)
## 5 0.001 2 2 0.435 Normal(0, 0.001)
## # ... with 2e+04 more rows
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mean_accuracy %>%
ggplot(aes(accuracy)) +
geom_histogram() +
facet_grid(set_size ~ prior)
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Prior predicted differences in accuracy
(diff_accuracy <- mean_accuracy %>%

arrange(set_size) %>%
group_by(iter, prior_beta_sd) %>%
mutate(diffaccuracy = accuracy - lag(accuracy) ) %>%
mutate(diffsize = paste(set_size,"-", lag(set_size))) %>%
filter(set_size >2))

## # A tibble: 15,000 x 7
## # Groups: iter, prior_beta_sd [5,000]
## prior_beta_sd iter set_size accuracy prior diffaccuracy
## <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
## 1 0.001 1 4 0.27 Normal(0, 0.001) 0.015
## 2 0.001 2 4 0.42 Normal(0, 0.001) -0.015
## 3 0.001 3 4 0.32 Normal(0, 0.001) -0.0400
## 4 0.001 4 4 0.825 Normal(0, 0.001) 0.0650
## 5 0.001 5 4 0.94 Normal(0, 0.001) -0.01
## diffsize
## <chr>
## 1 4 - 2
## 2 4 - 2
## 3 4 - 2
## 4 4 - 2
## 5 4 - 2
## # ... with 1.5e+04 more rows
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diff_accuracy %>%
ggplot(aes(diffaccuracy)) +
geom_histogram() +
facet_grid(diffsize ~ prior)

Normal(0, 0.001) Normal(0, 0.01) Normal(0, 0.1) Normal(0, 0.5) Normal(0, 1)

4 −
 2

6 −
 4

8 −
 6

−1.0 −0.5 0.0 0.5 −1.0 −0.5 0.0 0.5 −1.0 −0.5 0.0 0.5 −1.0 −0.5 0.0 0.5 −1.0 −0.5 0.0 0.5

0

200

400

600

0

200

400

600

0

200

400

600

diffaccuracy

co
un

t

62



𝛼 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1.5)
𝛽 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.1)

(16)
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The brmsmodel

fit_recall <- brm(correct ~ 1 + c_set_size,
data = df_recall_data,
family = bernoulli(link = logit),
prior = c(

prior(normal(0, 1.5), class = Intercept),
prior(normal(0, .1), class = b, coef = c_set_size)

)
)
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posterior_summary(fit_recall, pars = c("b_Intercept", "b_c_set_size"))

## Estimate Est.Error Q2.5 Q97.5
## b_Intercept 1.92 0.298 1.36 2.524
## b_c_set_size -0.18 0.081 -0.34 -0.028
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plot(fit_recall)
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How to communicate the results?

If we want to talk about the effect estimated by the model in log-odds
space, we summarize the posterior of 𝛽 in the following way:

• ̂𝛽 = −0.18, 95% CrI = [−0.34, −0.03].
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Effect in proportions

Average accuracy for the task:
alpha_samples <- posterior_samples(fit_recall)$b_Intercept
av_accuracy <- plogis(alpha_samples)
c(mean = mean(av_accuracy), quantile(av_accuracy, c(.025, .975)))

## mean 2.5% 98%
## 0.87 0.80 0.93
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Effect in proportions

Effect of our manipulation
beta_samples <- posterior_samples(fit_recall)$b_c_set_size
effect_av_set_size <- plogis(alpha_samples) - plogis(alpha_samples - beta_samples)
c(mean = mean(effect_av_set_size), quantile(effect_av_set_size, c(.025, .975)))

## mean 2.5% 98%
## -0.019 -0.037 -0.003

Notice the interpretation here:

if we increase the set size from the average set size minus one to the
average set size (5), we get a reduction in the accuracy of recall of −0.02,
95% CrI = [−0.04, 0].
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Effect in proportions

Recall that the average set size, 5, was not presented to the subject!

Decrease in accuracy from a set size of 2 to 4:
set4 <- 4 - mean(df_recall_data$set_size)
set2 <- 2 - mean(df_recall_data$set_size)
effect_4m2 <- plogis(alpha_samples + set4 * beta_samples) -

plogis(alpha_samples + set2 * beta_samples)
c(mean = mean(effect_4m2), quantile(effect_4m2, c(.025, .975)))

## mean 2.5% 98%
## -0.0295 -0.0540 -0.0057

We see that increasing the set size does have a detrimental effect in
recall, as we suspected.
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Descriptive adequacy

We could also make predictions for other conditions not presented in the
actual experiment, such as set sizes that weren’t tested:

• We extend our dataset adding rows with set sizes of 3, 5, and 7: we
add 23 trials of each new set size

• Notice is that we need to center our predictor based on the original
mean set size
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df_recall_data_ext <- df_recall_data %>%
bind_rows(tibble(

set_size = rep(c(3, 5, 7), 23),
c_set_size = set_size - mean(df_recall_data$set_size)

))
df_recall_pred_ext <- posterior_predict(fit_recall,

newdata = df_recall_data_ext,
nsamples = 1000

) %>%
array_branch(margin = 1) %>%
map_dfr(function(yrep_iter) {

df_recall_data_ext %>%
mutate(correct = yrep_iter)

}, .id = "iter") %>%
mutate(iter = as.numeric(iter))
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(df_recall_pred_ext_summary <- df_recall_pred_ext %>%
group_by(iter, set_size) %>%
summarize(accuracy = mean(correct)))

## # A tibble: 7,000 x 3
## # Groups: iter [1,000]
## iter set_size accuracy
## <dbl> <dbl> <dbl>
## 1 1 2 0.826
## 2 1 3 0.913
## 3 1 4 0.957
## 4 1 5 1
## 5 1 6 0.826
## # ... with 6,995 more rows
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# observed means:
(df_recall_summary <- df_recall_data %>%

group_by(set_size) %>%
summarize(accuracy = mean(correct)))

## # A tibble: 4 x 2
## set_size accuracy
## <dbl> <dbl>
## 1 2 1
## 2 4 0.957
## 3 6 0.913
## 4 8 0.609
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ggplot(df_recall_pred_ext_summary, aes(accuracy)) +
geom_histogram(alpha = .5) +
geom_vline(aes(xintercept = accuracy), data = df_recall_summary) +
facet_grid(set_size ~ .)
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