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Model comparison



There are two perspectives on model comparison:

• a (prior) predictive perspective based on the Bayes factor using
marginal likelihoods

• a (posterior) predictive perspective based on cross-validation.
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Model comparison using the
Bayes factor



Marginal likelihood

Bayes’ rule can be written with reference to a specific statistical model
ℳ1.

𝑝(𝜃 ∣ 𝐷, ℳ1) = 𝑝(𝜃 ∣ ℳ1)𝑝(𝐷 ∣ 𝜃, ℳ1)
𝑝(𝐷 ∣ ℳ1) (1)

Here D refers to the data and 𝜃 is a vector of parameters.

𝑃(𝐷 ∣ ℳ1) is the marginal likelihood, and is a single number that tells
you the likelihood of the observed data D given the model ℳ1

The likelihood is evaluated for every possible parameter value, weighted
by the prior plausibility and summed together.
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A simple example:

• Model 1

l1 <- function(p) dbinom(80, 100, p) * dbeta(p, 4, 2)
(ml1 <- integrate(l1, 0, 1)[[1]])

## [1] 0.02
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A simple example:

• Model 2

l2 <- function(x, y) {
dbbinom(80, 100, x, y) * dlnorm(x, 0, 100) *
dlnorm(y, 0, 100)

}
(ml2 <- rmutil::int2(l2, a = c(0, 0), eps = 1e-04, max = 12))

## [1] 0.00000833
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A simple example:

• Model 3

l3 <- function(p) dbinom(80, 100, p) * dbeta(p, 1, 1)
(ml3 <- integrate(l3, 0, 1)[[1]])

## [1] 0.0099
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Bayes factor

BF is a measure of relative evidence, compares the predictive
performance of two models, by means of a ratio of marginal likelihoods:

𝐵𝐹12 = 𝑃(𝐷 ∣ ℳ1)
𝑃 (𝐷 ∣ ℳ2) (2)

• 𝐵𝐹12 indicates the extent to which the data are more probable under
ℳ1 over ℳ2, or

• which of the two models is more likely to have generated the data, or

• the relative evidence that we have for ℳ1 over ℳ2.
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Bayes factor interpretation

𝐵𝐹12 Interpretation

> 100 Extreme evidence for ℳ1.
30 − 100 Very strong evidence for ℳ1.

10 − 30 Strong evidence for ℳ1.
3 − 10 Moderate evidence for ℳ1.

1 − 3 Anecdotal evidence for ℳ1.
1 No evidence.

1
1 − 1

3 Anecdotal evidence for ℳ2.
1
3 − 1

10 Moderate evidence for ℳ2.
1

10 − 1
30 Strong evidence for ℳ2.

1
30 − 1

100 Very strong evidence for ℳ2.
< 1

100 Extreme evidence for ℳ2.
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In our previous example, we can calculate 𝐵𝐹12, 𝐵𝐹13, and 𝐵𝐹23. (Notice
that 𝐵𝐹21 is simply 1

𝐵𝐹12
).

• 𝐵𝐹12 = 𝑚𝑙1/𝑚𝑙2 = 2399.666
• 𝐵𝐹13 = 𝑚𝑙1/𝑚𝑙3 = 2.018
• 𝐵𝐹23 = 𝑚𝑙2/𝑚𝑙3 = 0.001 = 1

𝐵𝐹32
= 1

1189.007
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Probability of a model

If we want to know how much more probable model ℳ1 than ℳ2 is given
the data, 𝐷, we need the prior odds, how much probable ℳ1 is than ℳ2
a priori.

𝑝(ℳ1 ∣ 𝐷)
𝑝(ℳ2 ∣ 𝐷) =𝑝(ℳ1)

𝑝(ℳ2) × 𝑃(𝐷 ∣ ℳ1)
𝑃 (𝐷 ∣ ℳ2) (3)

Posterior odds12 =Prior odds12 × 𝐵𝐹12 (4)

The Bayes factor only tells us how much we need to update our relative
belief between the two models.
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Example: Null hypothesis testing the N400 effect

While we have previously estimated the effect of cloze probability on the
N400, estimation cannot really answer a very popular question: How
much evidence we have in support for the effect of cloze probability?

We are going to answer this question with the Bayes factor, by doing
model comparison: We’ll compare a model that assumes a certain effect,
with a null model that assumes no effect.
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The prior on 𝛽 will be crucial for the calculation of the Bayes factor.

1. I generally want to be agnostic regarding the direction of the effect: I will
center the prior of 𝛽 on zero.

2. I would need to know a bit about the variation on the DV that I’m analyzing.
I would say that for N400 averages, the standard deviation of the signal is
between 8-15 microvolts.

3. Effects in psycholinguistics are rather small, representing between 5%-30%
of the SD of the DV.

4. I know that the effect of noun predictability on the N400 is one the most
reliable and strongest effects in neurolinguistics, and 𝛽 represents the
change in average voltage when we move from a cloze probability of zero to
one –the strongest prediction effect.

We will start then with 𝛽 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 5) (since 5 microV is 30% of 15).
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We are going to “smooth” the Cloze probability in this example:

eeg_data <- read_tsv("data/public_noun_data.txt") %>%
filter(lab=="edin") %>%
mutate(nans = round(cloze/100 *20),

scloze = (nans + 1) / 22,
cscloze = scloze - mean(scloze))
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m_N400_h_linear <- brm(n400 ~ cscloze +
(cscloze | subject) +
(cscloze | item),

prior = c(prior(normal(2, 5), class = Intercept),
prior(normal(0, 5), class = b),
prior(normal(10, 5), class = sigma),
# taus in our model
prior(normal(0, 2), class = sd),
prior(lkj(4), class =cor)),

warmup = 2000,
iter = 20000,
control = list(adapt_delta = 0.9),
save_all_pars = TRUE,
data = eeg_data)

15



m_N400_h_linear

## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: n400 ~ cscloze + (cscloze | subject) + (cscloze | item)
## Data: eeg_data (Number of observations: 2827)
## Samples: 4 chains, each with iter = 20000; warmup = 2000; thin = 1;
## total post-warmup samples = 72000
##
## Group-Level Effects:
## ~item (Number of levels: 80)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 1.51 0.34 0.82 2.16 1.00 27153 35328
## sd(cscloze) 1.91 1.02 0.12 3.88 1.00 21533 28485
## cor(Intercept,cscloze) -0.26 0.29 -0.74 0.38 1.00 62181 53276
##
## ~subject (Number of levels: 37)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 2.16 0.35 1.54 2.91 1.00 30933 46745
## sd(cscloze) 1.26 0.81 0.06 3.00 1.00 28600 40319
## cor(Intercept,cscloze) 0.08 0.30 -0.53 0.64 1.00 106208 53749
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 3.64 0.45 2.75 4.53 1.00 47343 49162
## cscloze 2.53 0.70 1.14 3.88 1.00 89936 54142
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 11.51 0.16 11.21 11.83 1.00 101098 52495
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
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And we’ll run our model without the parameter of interest, the null
model:
m_N400_h_null <- brm(n400 ~ 1 +

(cscloze | subject) +
(cscloze | item),

prior = c(prior(normal(2, 5), class = Intercept),
prior(normal(10, 5), class = sigma),
## taus in our model
prior(normal(0, 2), class = sd),
prior(lkj(4), class =cor)),

warmup = 2000,
iter = 20000,
control = list(adapt_delta = 0.9),
save_all_pars = TRUE,
data = eeg_data)
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m_N400_h_null

## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: n400 ~ 1 + (cscloze | subject) + (cscloze | item)
## Data: eeg_data (Number of observations: 2827)
## Samples: 4 chains, each with iter = 20000; warmup = 2000; thin = 1;
## total post-warmup samples = 72000
##
## Group-Level Effects:
## ~item (Number of levels: 80)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 1.42 0.35 0.71 2.08 1.00 23430 25594
## sd(cscloze) 2.92 1.02 0.60 4.76 1.00 18182 18089
## cor(Intercept,cscloze) -0.34 0.25 -0.76 0.22 1.00 45534 47787
##
## ~subject (Number of levels: 37)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 2.15 0.35 1.54 2.91 1.00 33189 49814
## sd(cscloze) 1.80 0.97 0.12 3.70 1.00 20586 29783
## cor(Intercept,cscloze) 0.09 0.28 -0.48 0.62 1.00 87320 56711
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 3.69 0.47 2.76 4.61 1.00 45035 49964
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 11.51 0.16 11.20 11.83 1.00 114631 52069
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

18



Now we are ready to compute log marginal likelihood via bridge sampling
for both models:

lml_linear <- bridge_sampler(m_N400_h_linear, silent = TRUE)
lml_null <- bridge_sampler(m_N400_h_null, silent = TRUE)
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The bayes_factor is a convenient function to calculate the Bayes factor.

(BF_ln <- bayes_factor(lml_linear, lml_null))

## Estimated Bayes factor in favor of x1 over x2: 54.15370

But it can be done like this as well:

BF_ln <- exp(lml_linear$logml- lml_null$logml).
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About choosing good priors

But what happens if we are have no clue about a good prior for 𝛽?

• We might be comparing the null model with a very “bad” alternative
model. See Uri Simonsohn’s criticism of Bayes factors
https://datacolada.org/78a).
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About choosing good priors

How to overcome this?

• learn about the effect size that we are investigating by first running
an exploratory analysis without Bayes factor, and use the
information of the first experiment to calibrate the priors for the next
confirmatory experiment. See Verhagen and Wagenmakers (2014) for
a Bayes Factor test calibrated to investigate replication success.

• Examine all (or a lot of) the possible alternative models, using a
sensitivity analysis; recall that the model is the likelihood and the
priors.
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Bayes factor for several models
(This will take a very long time)
prior_sd <- c(1, 1.5, 2,2.5, 5, 8, 10, 20, 40, 50)
BFs <- map_dfr(prior_sd, function(psd) {

gc() # force R "garbage collector" so that we don't run out of memory
fit <- brm(n400 ~ cscloze +

(cscloze | subject) +
(cscloze | item),

prior =
c(prior(normal(2, 5), class = Intercept),

set_prior(paste0("normal(0,",psd ,")"),
class = "b"),

prior(normal(10, 5), class = sigma),
## taus in our model
prior(normal(0, 2), class = sd),
prior(lkj(4), class =cor)),

warmup = 2000,
iter = 20000,
control = list(adapt_delta = 0.9),
save_all_pars = TRUE,
data = eeg_data)

lml_linear_beta <- bridge_sampler(fit, silent = TRUE)
tibble(beta_sd = psd, BF = bayes_factor(lml_linear_beta, lml_null)$bf)

})
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Evidence in favor of one H1

Evidence in favor of H0
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Figure 1: Prior sensitivity analysis for the Bayes factor 24



Comparison of two different
models



Example: Two different models of the N400 effect

It has been argued that the effect of predictability is logarithmic, we
might ask ourselves if this is also valid for the N400 effect, and thus how
much evidence we have for a logarithmic effect vs a linear effect.
eeg_data <- eeg_data %>%
mutate(clogscloze = log(scloze) - mean(log(scloze)))
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One new problem that arises is that we need to assign equivalent priors
to both 𝛽 in the models because they are interpreted differently, and we
want to put both models on equal footing.

• When there is a linear relationship, 𝛽 represents the rate of change
in the N400 average when we compare words with 0 to 1 Cloze
probability,

• When there is logarithmic relationship, 𝛽 represents a non-linear
effect: the rate of change in the average N400 when we compare
words with 𝑒𝑥𝑝(−1) = .36.. probability to 𝑒𝑥𝑝(0) = 1, or
𝑒𝑥𝑝(−2) = .1353 probability to 𝑒𝑥𝑝(−1) = .36...

One possible solution is to force them to have the same SD:
eeg_data <- eeg_data %>%
mutate(clogscloze = c(scale(log(scloze)) * sd(cscloze)))
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m_N400_h_log <- brm(n400 ~ clogscloze +
(clogscloze | subject) +
(clogscloze | item),

prior =
c(
prior(normal(2, 5), class = Intercept),
prior(normal(0, 5), class = b),
prior(normal(10, 5), class = sigma),
# taus in our model
prior(normal(0, 2), class = sd),
prior(lkj(4), class = cor)

),
warmup = 2000,
iter = 20000,
control = list(adapt_delta = 0.9),
save_all_pars = TRUE,
data = eeg_data
) 27



m_N400_h_log

## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: n400 ~ clogscloze + (clogscloze | subject) + (clogscloze | item)
## Data: eeg_data (Number of observations: 2827)
## Samples: 4 chains, each with iter = 20000; warmup = 2000; thin = 1;
## total post-warmup samples = 72000
##
## Group-Level Effects:
## ~item (Number of levels: 80)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 1.52 0.34 0.82 2.17 1.00 23552 23901
## sd(clogscloze) 1.40 0.88 0.07 3.25 1.00 26927 35507
## cor(Intercept,clogscloze) -0.15 0.31 -0.70 0.49 1.00 80968 54969
##
## ~subject (Number of levels: 37)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 2.15 0.35 1.53 2.90 1.00 30355 47870
## sd(clogscloze) 1.27 0.82 0.06 3.03 1.00 26687 34820
## cor(Intercept,clogscloze) 0.04 0.30 -0.55 0.61 1.00 102306 51214
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 3.64 0.45 2.75 4.53 1.00 44071 50269
## clogscloze 2.86 0.68 1.50 4.19 1.00 95123 55856
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 11.52 0.16 11.21 11.83 1.00 101112 54008
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
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We calculate the log-marginal likelihood
lml_log <- bridge_sampler(m_N400_h_log, silent = TRUE)

And we can compare the models now:

(BF <- bayes_factor(lml_linear, lml_log))

## Estimated Bayes factor in favor of x1 over x2: 0.19872

We can interpret this more easily as the model with the log Cloze
probability being (1/BF) 5 more likely than the model with linear Cloze
probability.
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Summary

• While in reasonably large samples, the posterior distribution is not overly
influenced by weakly informative priors, the Bayes factor is.

• When priors are defined to allow a broad range of values, the result will be
a lower marginal likelihood (which in turns influences the Bayes factor, as
we saw in the examples above).

• The calculation of the Bayes factor depends on answering a question about
which there may be disagreement among researchers: “What way of
assigning probability distributions of effect sizes as predicted by theories
would be accepted by protagonists on all sides of a debate?” (Dienes 2011)

• One of advantage of the Bayes Factor is that once the minimal magnitude
of an expected effect is agreed upon, evidence can be gathered in favor of
the null hypothesis.
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Further readings

• Fabian Dablander’s blog post
https://fabiandablander.com/r/Law-of-Practice.html for a comparison
between Bayes factor and leave-one-out (loo) cross validation

• For a Bayes Factor Test calibrated to investigate replication success, see
Verhagen and Wagenmakers (2014).

• Chapter 7 of Gelman et al. (2014)
• For a discussion about the advantages and disadvantages of
(leave-one-out) cross-validation, see Gronau and Wagenmakers (2018),
Vehtari et al. (2019) and Gronau and Wagenmakers (n.d.).
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• Interesting read about when cross-validation can be applied:
https://statmodeling.stat.columbia.edu/2018/08/03/loo-cross-
validation-approaches-valid/

• Against null hypothesis testing with BF:
https://statmodeling.stat.columbia.edu/2019/09/10/i-hate-bayes-
factors-when-theyre-used-for-null-hypothesis-significance-
testing/

• In favor of null hypothesis testing with BF as an approximation (but
assuming realistic effects): https:
//statmodeling.stat.columbia.edu/2018/03/10/incorporating-bayes-
factor-understanding-scientific-information-replication-crisis/
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