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Abstract

This tutorial analyzes voice onset time (VOT) data from Dongbei (Northeastern)
Mandarin Chinese and North American English to demonstrate how Bayesian linear
mixed models can be fit using the programming language Stan via the R package brms.
Through the case study, we demonstrate some of the advantages of the Bayesian
framework: researchers can (i) flexibly define the underlying process that they believe
to have generated the data; (ii) obtain direct information regarding the uncertainty
about the parameter that relates the data to the theoretical question being studied;
and (iii) incorporate prior knowledge into the analysis. Getting started with Bayesian
modeling can be challenging, especially when one is trying to model one’s own (often
unique) data. It is difficult to see how one can apply general principles described in
textbooks to one’s own specific research problem. We address this barrier to using
Bayesian methods by providing three detailed case studies, with source code to allow
easy reproducibility. The examples presented are intended to give the reader a flavor
of the process of model-fitting; suggestions for further study are also provided. All
data and code are available from: https://github.com/vasishth/jopbayes.
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1. Introduction

In phonetics and other related areas of the language sciences, the vast majority of
studies are designed to elicit several data points from each participant for each level
of the linguistic variable of interest. This design poses difficulties for classic ANOVA
models, which can accommodate only one random effect at a time, so that either
the sets of datapoints for each participant or the sets of datapoints for each item
must be replaced with the mean values (Clark, 1973). Over the last two decades,
phoneticians have addressed these difficulties by turning to other methods, and linear
mixed models—sometimes referred to as multilevel or hierarchical linear models—have
become a standard tool, perhaps the standard tool for analyzing repeated measures
data. The lme4 package (Pinheiro and Bates, 2000; Baayen et al., 2008; Bates
et al., 2015b) in R has greatly simplified model specification and data analysis for
repeated measures designs. Even more recently, a Bayesian alternative to frequentist
linear mixed models has become available, largely due to the emergence of a new
programming language, Stan (version 1.17.3) (Stan Development Team, 2017b). In
this article, we provide a tutorial introduction to fitting Bayesian linear mixed models.
In order to make it easy for the newcomer to Bayesian data analysis to fit models, we
use the popular and powerful R package brms, version 2.1.9 (Bürkner, 2016), which
uses lme4 syntax that researchers in linguistics and psychology are familiar with.

Fitting Bayesian models takes more time and effort than their frequentist analogues.
Why bother to learn this relatively complex approach? We feel that there are several
important advantages to fitting Bayesian models. Perhaps the most important one
is that it gives us a degree of flexibility in defining models that is difficult to match
with frequentist tools (Lee, 2011; Nicenboim and Vasishth, 2016). Examples are
linear mixed models with a “maximal” random-effects structure (Barr et al., 2013),1

and models incorporating non-standard assumptions (we discuss such a case below).
A second advantage of Bayesian modeling is that we can focus our attention on
quantifying our uncertainty about the magnitude of an effect. Instead of drawing a
conclusion like “gender affects voice onset time”, using the Bayesian framework we
can identify a credible interval of plausible values representing the effect. In other
words, we can present a probability distribution of plausible values, instead of focusing
on whether a particular confidence interval does or does not contain the value 0. Such
quantitative summaries of an effect tell us much more about the research question
than binary statements like “effect present” or “effect absent.” A third advantage

1Of course, one has to exercise judgement when deciding to fit such overparameterized models.
See the discussions in Bates et al. (2015a); Baayen et al. (2017); Matuschek et al. (2017).
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of Bayesian data analysis is that we can incorporate prior knowledge or beliefs in
the model in an explicit way with the use of so-called informative priors. Such a use
of priors is not widespread, but could be a powerful tool for building on what we
already know about a research question.

In this tutorial, we will provide an informal introduction to Bayesian data anal-
ysis, and then present three case studies involving retrospective measurements of
productions in a large cross-linguistic phonetic corpus. These examples are intended
to provide a practical first entry to Bayesian data analysis. We do not aim to cover all
aspects of Bayesian modeling here, but suggestions for further reading are provided
at the end. In our case studies, we will focus on (generalized) linear mixed models
(Pinheiro and Bates, 2000; Baayen et al., 2008; Bates et al., 2015b), because they are
a standard tool today in experimental research in linguistics and the psychological
sciences. We assume in this paper that the reader knows how to fit linear mixed
models using the R package lme4 (Bates et al., 2015b).

All data and code are available from https://github.com/vasishth/jopbayes.

2. An informal introduction to Bayesian data analysis

Consider a simple case where we carry out an experiment in which we measure
voice onset time in milliseconds in recordings of word-initial stops such as Mandarin
/th/ and /kh/ produced by male and female participants. Participants in each gender
category are asked to produce multiple stop-initial words, resulting in repeated
measurements of VOT from each participant. An example data-frame is shown in
Listing 1.

For i = 1, . . . , I participants and j = 1, . . . , J items, we could fit a so-called
varying intercepts and varying slopes linear mixed model of the type specified in
(1) – the equation for a frequentist linear mixed model for the effect of gender on
VOT. A notational convention we use here: a varying intercept always has index
0, and a varying slope has index 1. Thus, a varying intercept for item j is written
w0,j and a varying slope is written w1,j. Fixed intercepts and slopes also have the
same numerical subscript convention of 0 for intercepts, and 1 for the slope (with
increasing numbers in the case of multiple predictors).

Using these notational conventions, a frequentist linear mixed model for the effect
of gender on VOT could be specified as follows:

V OTij = β0 + u0,i + w0,j + (β1 + w1,j) × genderij + εij (1)

where u0,i and w0,j are, respectively, the by-participant and by-item adjustments to
the intercept coefficient β0, and w1,j is the by-item adjustment to the slope term for
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subject item gender VOT

F01 kh^.l&r 0.5 105

F01 kh^.tIxN 0.5 120

F01 khA9 0.5 104

F01 khE.tS&p 0.5 127

F01 khek 0.5 141

F01 khev 0.5 106

...

M20 thu.n& -0.5 101

M20 thub -0.5 66

M20 thuT -0.5 67

M20 twhI.stIxd -0.5 69

M20 twhi.z&rz -0.5 93

M20 twhIn -0.5 85

Listing 1: Example data-set from English.

gender, β1. The varying intercepts for subjects, u0,i, are assumed to be distributed as
Normal(0, σu0); similarly, the varying intercepts for items w0,j have the distribution
Normal(0, σw0), and the varying slopes for item by gender, w1,j have the distribution
Normal(0, σw1). (Note that we follow the convention here that a Normal distribution
is written in terms of its mean and standard deviation, not variance; in other words,
we write Normal(µ, σ)). The residual error, ε, is assumed to have the distribution
Normal(0, σe). Finally, the varying intercepts and slopes for item, w0,j, w1,j are
assumed to have correlation ρw. In lme4 syntax, the above model corresponds to the
following (datE stops refers to the data frame):

lmer(VOT ~ 1 + gender + (1 | subject) + (1 + gender | item),

dat = datE_stops)

Because lme4 assumes an intercept term, the 1 + can be omitted, as in:

lmer(VOT ~ gender + (1 | subject) + (gender | item), dat = datE_stops)

The above model requires the estimation of the parameters listed in 2. (Note
that in Bayesian linear mixed models, u0i, w0j, w1j are also parameters; but these are
not of primary interest in studies such as this example which address questions only
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about group effects rather than about patterns of differences across individuals or
across items.)

β0, β1, σu0, σw0, σw1, ρw, σe (2)

The intercept β0 represents the grand mean VOT. Note that it does not make
sense to fit varying slopes for gender by participants in this model because gender is
a between-participants factor (i.e., we can’t investigate the effect of gender on the
participants). Gender is, however, a within-items factor, so varying slopes for gender
can be fit by items (i.e., we can investigate the effect of gender on the items).

In the frequentist framework, we would just need to run the lmer function as
shown above. However, in the Bayesian linear mixed model, some more work is
needed before we can run the corresponding function in the package brms. While it
is possible to fit the previous function with brms without the specifications described
below, this would make use of default priors, which may not be adequate for every
data-set.

The very first step is to define prior distributions for each of the parameters in
the model. Once the priors are defined, the model is fit, as we will show below. The
end-product of a Bayesian analysis is a so-called joint posterior distribution of all
the parameters. These posterior distributions show the probability distributions of
plausible values of the parameters, given the data and the model. These posteriors
are then used for statistical inference.

2.1. Defining priors

We start by choosing the following prior distributions for the parameters in the
model. The notation “∼” should be read as “is distributed as.” Normal+(0, 100) is
a short-hand for a truncated (or half) normal distribution with mean 0 and standard
deviation 100, which includes only positive values. The choice of a truncated normal
distribution instead of a normal distribution is necessary for the priors on standard
deviations, because standard deviation cannot be less than 0.

1. β0 ∼ Normal(0, 200)

2. β1 ∼ Normal(0, 50)

3. σe ∼ Normal+(0, 100)

4. σu0 ∼ Normal+(0, 100)

5. σw0, σw1 ∼ Normal+(0, 100)

6. ρw ∼ LKJ(2)
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When defining priors, it is a good idea to visualize them so that the researcher
can decide whether these are reasonable. The priors chosen here are visualized in
Figure 1.

−400 −200 0 200 400

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

β0

d
e
n
s
it
y

−400 −200 0 200 400

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

β1

d
e
n
s
it
y

0 50 100 150 200 250 300

0
.0

0
0

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
4

σe

d
e
n
s
it
y

0 50 100 150 200 250 300

0
.0

0
0

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
4

σu0

d
e
n
s
it
y

0 50 100 150 200 250 300

0
.0

0
0

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
4

σw0

d
e
n
s
it
y

−1.0 −0.5 0.0 0.5 1.0

0
.0

0
.2

0
.4

0
.6

ρw

d
e
n
s
it
y

Figure 1: Prior distributions for the parameters of the varying intercepts and varying slopes linear
mixed model.

Priors express beliefs about the plausible values of the parameters; these beliefs
can be based on expert or domain knowledge, or could be based on already-available
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data. For example, the theoretically interesting parameter for us is the effect of gender,
β1. This is assumed here to have a prior distribution Normal(0, 50), which implies
that the parameter is believed to lie between −100 and +100 ms with probability
95%. This range arises because 95% of the probability in a Normal distribution
with mean µ and standard deviation σ is contained within the approximate range
µ± 2 × σ. This prior for β1 assumes quite a wide range of possible values; it could
easily be much more constrained. For example, if we know from previous research
that gender effects on VOT are unlikely to be larger than 40 ms, the prior Normal(0,
20) could be quite reasonable. As we will show below, a so-called sensitivity analysis
(which is standard practice in medicine, economics, and other fields) can be useful
to check whether the posterior distribution of the parameter is affected by the prior
specification.

The priors on the standard deviations (Normal+(0, 100)) express the fact that a
value below 0 is impossible, and that larger values (larger than 200) are unlikely. Why
did we assume that values larger than 200 are unlikely? This decision should ideally
come from knowledge about and experience with VOT data. However, nothing hinges
on this particular choice of prior; we could have chosen a prior that is even more
spread out (has an even larger standard deviation) without any substantial change in
the outcome.

An important point to notice in the prior specification for the intercept β0 is that
we allow negative values in the prior distribution. Since we assume in this paper
that VOT can only have values greater than 0, we could in principle constrain the
prior to allow only positive values. However, because there is sufficient data in the
present examples, these decisions about the prior will not have a major impact on
the posterior distribution. If we had very little data to work with, the prior would be
highly influential in determining the outcome.

The correlation parameter ρw uses the LKJ-correlation prior which is based on
a method for generating random correlation matrices developed by Lewandowski
et al. (2009). This takes a numerical parameter that determines the shape of the
distribution. A standard choice is to choose the LKJ(2) prior, because it assumes that
extreme values (±1) are highly unlikely. This prior, which is currently only available
in Stan (Stan Development Team, 2017b) (and of course in brms), can be used for
essentially arbitrarily large correlation matrices of random effects.

The priors we have chosen here allow a broad range of values for the parame-
ters, and are called regularizing, weakly informative priors (Gelman et al., 2017).
“Regularizing” here means that extreme values are disallowed or downweighted; for
example, a prior on a correlation parameter would be regularizing if it disallows
or downweights extreme values such as −1 or +1, which are quite unlikely in data.
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Weakly informative priors give some minimal amount of information and have the
objective of yielding stable inferences (see also Chung et al., 2013; Gelman et al.,
2008). For most applications of Bayesian modeling, it is standard to use regularizing,
weakly informative priors, but informative priors based on expert opinion or prior
knowledge can and should be considered as well; we illustrate this with an example
below.

library(brms)

priors <- c(set_prior("normal(0, 200)", class = "Intercept"),

set_prior("normal(0, 50)", class = "b",

coef = "gender"),

set_prior("normal(0, 100)", class = "sd"),

set_prior("normal(0, 100)", class = "sigma"),

set_prior("lkj(2)", class = "cor"))

Listing 2: Example of prior specification in brms.

2.2. Specifying priors in brms

The prior specification in Listing 2 defines different priors for each class of
parameter. Class Intercept is the intercept parameter (i.e., β0), class b are all the
slopes in a model (in this case it indicates the β1 parameter), i.e., the slope for gender;
the parameter for gender can be marked by writing the name of the predictor variable
in the data-frame (here, female is coded as +1/2 and male as −1/2). The parameters
of class sd are the standard deviation parameters for the random effects (in this case,
σu0, σw0, and σw1 ) and the class sigma is the standard deviation of the residual
error ε (i.e., σe). The parameters of class sd and sigma are automatically constrained
by brms to not have values lower than 0. Finally, the parameter of class cor is the
correlation parameter, and can be used to define LKJ priors for correlations in an
essentially arbitrarily complex random effects structure. It is this LKJ prior that
ensures that the correlation parameter(s) can generally be estimated, even when data
are relatively sparse. Note, however, that when data are too sparse to estimate such
parameters, the uncertainty of the estimate will be high—one would learn nothing
new (beyond what is specified through the prior distribution) about that parameter
from the data.
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2.3. Specifying the linear mixed model in brms

After we have defined the priors as shown above, we define the linear mixed model
using lme4 syntax, as shown in Listing 3. The brms code has some differences from
lme4:

1. The term family = gaussian() makes explicit the underlying likelihood func-
tion that is implicit in lme4. Other linking functions are possible, exactly as in
the glmer function in lme4.

2. The term prior takes as argument the list of priors we defined in Listing 1.
Although this specification of priors is optional, we suggest that the researcher
explicitly specify each prior. Otherwise, brms will define a prior by default,
which may or may not be appropriate for the research area. We return to this
point below.

3. The term iter refers to the number of iterations that the sampler makes to
sample from the posterior distribution of each parameter (by default 2000).

4. The term warmup refers to the number of iterations from the start of sampling
that are eventually discarded (by default half of iter).

5. The term chains refers to the number of independent runs for sampling (by
default four).

6. The term control refers to some optional control parameters for the sampler,
such as adapt delta, max treedepth, and so forth.

At this beginning stage, it is not important to understand the details behind
iterations, warmup, chains, and the control structure. The values used in Listing 3
will suffice for typical data-sets in phonetics. Most of these are the default values
for those terms, and in case they lead to warnings, Stan and brms will print out
detailed suggestions on how to proceed; the researcher should follow the instructions
in the warning mesages, and consult guide to Stan’s warnings (mc-stan.org/misc/
warnings.html). For example, when we used the default model in Listing 3 with
the Mandarin data frame, the model did not converge and it was recommended to
increase the default value (.8) of adapt delta (see section 3.1.5).

m1M <- brm(formula = VOT ~ gender + (1 | subject) + (gender | item),

data = datM_stops, family = gaussian(), prior = priors,

iter = 2000, chains = 4, control = list(adapt_delta = 0.99))

Listing 3: Example of model specification in brms.
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After the Bayesian linear mixed model has been fit by running the code shown in
Listing 3, the next question is: how to draw inferences from the model output, and
how to summarize the results? In the next section, we work through some examples
illustrating the steps. In our first example below, in order to illustrate the advantages
of using Stan and brms, we also compare the performance of the Bayesian model with
the frequentist estimates.

3. Research questions

In our case study, we use published voice onset time (VOT) data measured in
milliseconds for word-initial stops elicited from 10 adult female and 10 adult male
speakers that use differences in VOT in some way to contrast at least two series of
stops. We use data from 20 speakers of Dongbei (Northeastern) Mandarin Chinese
(Li, 2013) and 20 speakers of North American English (Kong et al., 2012). The target
stop productions were elicited in the same way across the two languages, using a
picture-prompted word-repetition task that was developed to elicit word productions
from young children, (Edwards and Beckman, 2008). Because the VOT measurements
were made using the same criteria by the same group of researchers and their research
assistants, they are amenable to evaluating the following questions:

1. Does VOT in the long-lag stops (aspirated stops in Mandarin and voiceless
stops in English) differ by gender in each language?
Li (2013), Peng et al. (2014), and Ma et al. (2017) show that in three different
varieties of Mandarin, women tend to produce aspirated stops with longer VOT
values relative to men. In motivating her study, Li reviews many previous
studies showing that in both North American English and British English,
women tend to produce voiceless stops with longer VOT values relative to men.
These studies include Morris et al. (2008); Robb et al. (2005); Ryalls et al.
(1997); Swartz (1992).

2. Is VOT in the long-lag stops predicted by speaker’s typical vowel duration (as
a proxy for speech rate)?
A number of studies reviewed in Simpson (2012) suggest that cross-linguistically,
women tend to speak more slowly and clearly. For example, Byrd (1994) mea-
sured longer utterance durations in female speakers of North American English
and found that they tend to use less vowel reduction. Similarly, Hillenbrand
et al. (1995) and many others have shown that female speakers produce longer
stressed vowels than men. Building on this work as well as on work such as
Kessinger and Blumstein (1997) and Pind (1995) showing that VOT is corre-
lated with speaking rate, Li (2013) suggests that it is important to test for
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effects of inter-speaker rate differences when examining apparent gender effects
on VOT values.

3. Are there cross-linguistic differences between English and Mandarin for questions
1 and 2?

We investigate each of these questions next.

3.1. The effect of gender on VOT in long-lag stops

In order to address question 1, we begin by plotting voice onset time values for
each participant in each language, grouping the participants by gender: see Figure 2.
As the figure shows, the female speakers on average have longer VOT values than
male speakers in the stops in the long-lag category (i.e., the voiceless stops of English
and the aspirated stops of Mandarin). In contrast, in the other stop type, the effect
of gender is either non-existent (in the voiced stops of English) or in the opposite
direction (in the unaspirated stops of Mandarin). Li (2013) interpreted the interaction
between gender and stop type for Mandarin as evidence that the effect of gender is
an indirect result of a gender effect on speech clarity, with male speakers tending to
reduce the contrast between unaspirated and aspirated stops and female speakers
tending to enhance it. Evaluating the evidence for this interpretation of the Mandarin
interaction is complicated by the fact that the distributions of the VOT values for the
speakers with larger mean values cover a wider range and are more skewed relative
to the distributions for the speakers with smaller mean values. This pattern suggests
that a log transform is in order (Gelman and Hill, 2007, 59-65). However, the fact
that most of the English speakers produced at least some tokens of voiced stops with
voicing lead precludes a simple application of the transform to address the question
of the gender effect in both languages using the same model. In keeping with the
purpose of this tutorial introduction, therefore, we will defer the problem of how the
gender effect depends upon the stop type for a future paper, and here include just
the VOT values for the stop types with long-lag VOT.

We fit the Bayesian linear mixed model shown in Listing 3 for Mandarin and for
English repeated here in Listing 4 for convenience. Along the way, we also fit the
corresponding lme4 models.

m1E <- brm(formula = VOT ~ gender + (1 | subject) + (gender | item),

data = datE_stops, family = gaussian(), prior = priors,

iter = 2000, chains = 4, control = list(adapt_delta = 0.99))

Listing 4: Model specification in brms to address Question 1.
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Figure 2: Stripcharts showing the distribution of VOT values for each of the participants, grouped
by language (with Mandarin speakers in the left panel and English speakers in the right panel) and
by gender within each language. Boxplots in the center of each panel show the median, inter-quartile
range, and range for each gender and stop type. (The whiskers for the minimum VOT for English
voiced stops are well below the bottom of the plot, due to the 77 tokens with voicing lead.) The
grey shaded dots are for unaspirated/voiced stops that are not of interest for the current paper but
are included nonetheless for comparison purposes.
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3.1.1. Summarizing the results of a Bayesian analysis

We can summarize the posterior distributions of the parameters of a model
graphically using the function stanplot, that calls the package bayesplot (Gabry
and Mahr, 2017). In Listing 5, we plot the posterior distributions of the model m1E
using histograms.

stanplot(m1E, type="hist")

Listing 5: Code for plotting posterior distributions of the model m using histograms.

The plots produced by bayesplot are based on the popular package ggplot2

(Wickham, 2009) and thus plots made with bayesplot can be modified with ggplot2

syntax. In Figures 3 and 4, for example, we modified the plots to show 95% Bayesian
credible intervals, as well as the frequentist lme4 estimates and 95% credible intervals,
for Mandarin and English respectively. Note that by default lme4 only outputs point
value estimates for the standard deviation and correlation parameters; the Bayesian
model will always deliver a posterior distribution. The figures show the posterior
distributions as well as 95% credible intervals: these are the range over which we
can be 95% certain that the true values of the parameter lie, given these particular
data and the model. Credible intervals have a different meaning than frequentist
confidence intervals; the latter refer to intervals that would contain the true unknown
point mean value if the experiment were hypothetically be repeated multiple times.
Thus, a single confidence interval technically does not tell us about the uncertainty
about our estimate of the parameter (although researchers often treat frequentist
confidence intervals as Bayesian credible intervals). For more on confidence intervals
versus credible intervals, see Morey et al. (2015).

The posteriors for the Mandarin data show that female speakers have an increased
VOT (over the grand mean), with an estimated mean 13 ms, and a 95% credible
interval 3, 23 ms. Comparing the parameter estimates of lme4 vs. Stan, we see the
effect of regularizing priors in the correlation parameter. The lme4 estimate for the
correlation is on the boundary (−1), indicating a failure to estimate the parameter
(Bates et al., 2015a); and the standard deviation of varying slope for gender by item
is much smaller in lme4. In lme4, a correlation estimate near +1 or −1 suggests that
there is insufficient data to estimate this parameter, and a simpler model without the
correlation parameter should be fit (Bates et al., 2015a).

Consider now the Bayesian estimate for the correlation. Like all posterior distri-
butions in a Bayesian analysis, this is a compromise (analogous to a weighted mean)
between the prior and the data: when data are sparse, the prior will dominate in
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determining the posterior, but when there are sufficient data-points, the data will
largely determine the posterior and lead to estimates similar to lme4’s. Notice, for
example, that the correlation’s posterior distribution is widely spread out between
−1 and 1; the estimate is near zero but it has very high uncertainty. This wide
distribution of the correlation is due to the regularizing effect of the LKJ(2) specifica-
tion. Note that with brms, we have succeeded in estimating the posterior distribution
of the parameter in the sense that we will not have a convergence failure. But we
haven’t learnt much about plausible values of the correlation parameter. If we had
much more data from Mandarin, we could in principle get very accurate estimates
of the correlation (which may or may not be 0). But as things stand, all that the
inclusion of the correlation parameter in the model achieves is that it incorporates
this source of uncertainty in the model. Also note that, in this particular data-set for
Mandarin, the correlation parameter is not going to affect our posterior distribution of
the effect of gender (β1); without the correlation parameter, the posterior distribution
has the same mean and credible interval (14, 95% credible interval 3, 23 ms). Such a
no-correlation model can be fit in brms using the double-vertical-bar syntax of lme4:

VOT ~ gender + (1 | subject) + (1 + gender || item)

This is equivalent to the following:

VOT ~ gender + (1 | subject) + (0 + gender | item) + (1 | item)

The posteriors from the English data show that the effect of gender has an
estimated mean 6 ms, 95% credible interval -5, 20 ms. We discuss the interpretation
of this and the Mandarin result in section 3.1.3.

3.1.2. Interpreting the results of a Bayesian analysis

Having fit the models for Mandarin and English, we now discuss different ways
of drawing inferences from the posterior distributions. Our favored approach is to
display the posterior distribution of the parameter of interest, because we believe that
the researcher’s focus should be on the estimate of the parameter and our uncertainty
of that estimate. However, other approaches exist; we discuss hypothesis testing using
Bayes factors, and predictive evaluation using an approximation of leave-one-out cross
validation.

3.1.3. Interpreting the posterior distribution

How to interpret these posterior distributions of the gender effect? If we had
carried out a frequentist analysis using the lme4 package or the like, we would have
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Figure 4: Posterior distributions of the English data investigating the effect of gender on VOT.
The circles and the solid lines represent the mean of the posterior and the 95% Bayesian credible
intervals respectively; the triangles and the horizontal dashed lines represent the frequentist (lme4)
estimates and the 95% frequentist confidence intervals respectively.
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found a “significant” effect of gender on VOTs in Mandarin but “no significant effect”
of gender in English. We can see this by just examining the frequentist confidence
intervals for the effect of gender in Figures 3 and 4: if the error bar in the frequentist
estimate for the gender effect spans zero on the x-axis, the effect would not be
significant at Type I error probability of 0.05.

Should the conclusion be that Mandarin shows effects of gender but English does
not? As statisticians have repeatedly pointed out (Wasserstein and Lazar, 2016), these
kinds of binary decisions (based on p-values or any other statistic such as credible
intervals) are common but highly misleading. On the one hand, when power is low,
if an effect comes out significant it is guaranteed to be an overestimate (Vasishth
et al., 2018). On the other hand, when power is low and an effect is found to be non-
significant, this often misleads researchers into the invalid belief that they have shown
that the null hypothesis is true. An example from psycholinguistics is Phillips et al.
(2011), where the absence of interference effects are presented as evidence of absence.
We suggest that the focus should instead be on obtaining the estimates and our
uncertainty of these estimates. Furthermore, in order to interpret the effect of gender
in these languages, the totality of the evidence available in the literature for these
languages should be quantitatively investigated, using, for example, a meta-analysis
(Jäger et al., 2017; Nicenboim et al., 2018). Evidence synthesis has been taken to a
new level through the MetaLab project at Stanford (http://metalab.stanford.edu).
Phonetics can also benefit greatly by quantifying what we have learnt from previous
studies, instead of classifying the literature on a phenomenon into two bins, significant
and non-significant results.

From the Mandarin and English data (taken out of the context of previous work
on this topic), we would conclude that there is some evidence for the effect of gender
on VOT in the two languages.

Notice that we are not rejecting any null hypothesis here, and we are computing
no p-value. The most useful information we can obtain from a Bayesian model is the
posterior distribution of the parameter of interest (here, β1). However, if necessary,
one can use this posterior to carry out hypothesis testing using Bayes factors (Lee
and Wagenmakers, 2014).

3.1.4. Using Bayes factor for hypothesis testing

Simplifying somewhat, the Bayes factor is the ratio of the likelihoods of the two
models under comparison. For example, if we want to carry out a Bayes factor
analysis of the effect of gender on VOT in Mandarin, we could compare the following
two models m1M and m0M:

## m1M: more complex model
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VOT ~ gender + (1 | subject) + (gender | item)

## m0M: simpler model

VOT ~ 1 + (1 | subject) + (gender | item)

We will follow a convention of indicating with a subscript the order in which
the models are being compared. For example, the Bayes factor, BF10, indicates the
extent to which the data supports m1M over m0M; BF01 would indicate the support
for m0M over m1M. A convention widely followed in Bayesian statistics is that a Bayes
factor value of 10-30 would constitute strong evidence in favor of the more complex
model, and smaller values, say 3-10, constitute weaker evidence. Values close to one
indicate no meaningful evidence for one model or the other.

Example code for computing the Bayes factor is shown in Listing 6. The full
model m1M has the same syntax as shown earlier, except that one term must be
added: save all pars = TRUE; this specification is needed to save the samples for all
parameters as the samples are needed for the Bayes factor calculation. After fitting
the full model m1M, one fits the reduced model, and then one can compare the two
models using the function bayes factor in brms. Note the order of the models m1M

and m0M in the function; this order matters in interpreting the Bayes factor because
it is a ratio of likelihoods of two alternative models. A ratio like 3 computed using
the function bayes factor(m1M, m0M) states that data is three times more likely to
have occurred under m1M than m0M. If the function call had been bayes factor(m0M,

m1M), the output would be 1/3.
When computing Bayes factors, it is important to check the sensitivity of the

Bayes factor to the prior for the parameter we are interested in testing. This is because
the Bayes factor is very sensitive to the choice of the prior, even in cases where the
posterior is not (or barely) affected. For example, in the Mandarin case, we computed
Bayes factors under three different priors for β1, the effect of gender. Table 1 shows
that when the prior on β1 is very constrained (Normal(0, 20)), the evidence is in
favor of an effect of gender. With increasingly diffuse priors, the evidence for the
effect of gender becomes progressively weaker. Table 1 also shows the mean and 95%
credible interval for the gender parameter; this remains largely unchanged despite
the different priors used (with more diffuse priors, the estimate of the mean increases
slightly). Thus, the Bayes factor is being affected by the prior. The point to take
away here is that Bayes factors can be a useful tool, but one should think carefully
about the prior, and one should consider the Bayes factor under several different
priors, including informative ones. In the present case, for example, the more diffuse
priors might be quite unrealistic. Researchers in psycholinguistics and phonetics
are not used to thinking about what constitutes a reasonable prior; but this is not
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# We use the same priors as before:

prior_summary(m1M,all=F)

## prior class coef group resp dpar nlpar bound

## 2 normal(0, 50) b gender

## 3 normal(0, 200) Intercept

## 4 lkj_corr_cholesky(2) L

## 6 normal(0, 100) sd

## 12 normal(0, 100) sigma

m1M <- brm(formula = VOT ~ gender + (1 | subject) + (gender | item),

data = datM_stops,

family = gaussian(), prior = priors,

save_all_pars = TRUE,

iter = 2000, chains = 4,

control = list(adapt_delta = 0.99))

m0M <- update(m1M, formula = ~ .-gender)

BF10 <- bayes_factor(m1M, m0M)

Listing 6: Example code showing how Bayes factor can be computed in brms.
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unusual in areas like medicine, where expert opinion often needs to be incorporated
into the data analysis (O’Hagan et al., 2006).

Prior on β1 BF10 Posterior of β1
mean lower upper

Normal(0,20) 6.19 12.71 2.97 22.45
Normal(0,50) 2.85 13.53 3.51 23.42
Normal(0,70) 2.21 13.48 3.44 23.52

Table 1: The influence of the prior on Bayes factor; an example from the Mandarin data. The
models being compared are linear mixed effects models with and without the gender factor.

3.1.5. Assessing model convergence

In Bayesian modeling, it is important to check whether the model has converged.
One metric for convergence is the so-called R̂ statistic (Rhat in the model output);
this is the ratio of the between to within chain variance. When each of the chains
is sampling from the posterior, the end-result is that the amount of between-chain
variability is approximately the same as within-chain variability, so that the ratio
of these variances is approximately 1. Thus, an Rhat of approximately 1 for each
parameter is one indication that the model has converged. In addition, one should
check the effective sample size (n eff). This is an estimate of the number of indepen-
dent draws from the posterior distribution. Since the samples are not independent,
n eff will generally be smaller than the total number of samples. How large n eff

should be depends on the summary statistics that we want to use. But as a rule of
thumb, n eff should be larger than 10% of the total number of samples. Thus, in
our case, the number of samples is 4000 (1000 from each of the four chains, having
discarded the first 1000 as warm-up), so n eff should ideally be larger than 400.

The fitted models above provide information about convergence diagnostics. As
shown in Listing 7, the summary function in brms provides information regarding the
Rhat and n eff diagnostics.

Apart from Rhat values and the number of effective samples, another indication
of successful convergence is that, when the chains are plotted, they overlap. This
is a visual check that confirms that the chains are mixing well. Figure 5 shows an
example trace plot for the Mandarin model’s fixed effects parameters (the intercept
and slope). This plot is generated using a built-in function call:

stanplot(m1M, pars = c("^b"))
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summary(m1E)

Family: gaussian

Links: mu = identity; sigma = identity

Formula: VOT ~ gender + (1 | subject) + (gender | item)

Data: datE_stops (Number of observations: 836)

...

Population-Level Effects:

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

Intercept 82.29 4.05 74.43 90.43 475 1.00

gender 6.46 6.42 -5.39 19.65 611 1.00

...

Listing 7: An extract from the summary output from a fitted brms model.

If the chains had not converged, one would see the trajectories of the chains going
in different directions.

A more detailed investigation of convergence can also be achieved using the
shinystan package (Stan Development Team, 2017a). This package provides a
self-contained graphical user interface for interactively exploring the posterior of a
Bayesian model, including help and glossaries. For example, we can explore the model
m1M in the following way:

library(shinystan)

shiny_m1M <- launch_shinystan(m1M)

While convergence problems may seem daunting at first, suggestions regarding
how to fix them appear on brms output when warnings are printed. Moreover, in
many cases the convergence problems appear due to an incorrect model specification
(e.g., having varying slopes for gender by participants in the previous model: ...+

(gender | subject)), or in the selection of priors (e.g., using a uniform prior when
there is not enough data), and thus they can be easily fixed. In some specialized
models (not discussed here), convergence problems are due to the geometry of the
posterior distribution and this may require reparameterization by modifying the Stan
code generated by brms (using make stancode()); see the Reparameterization section
of the Optimizing Stan Code chapter in the Stan documentation (Stan Development
Team, 2017b). Discussion of this topic is beyond the scope of this introductory
tutorial.
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Figure 5: Trace plots for the fixed effects parameters in the Mandarin data.
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3.1.6. Assessing model fit, sensitivity analysis, and model comparison

50 100 150

y
y rep

Figure 6: Posterior predictive checks for the Mandarin data. The lines marked yrep refer to the
posterior predictive values generated by the model, and the black solid line are the observed data.

One commonly used method for assessing how well the model matches up with
the observed data is to use so-called posterior predictive checks. Essentially, we
generate many instances of new data after computing the posterior distributions of
the parameters and compare them to observed data.

Posterior predictive samples can easily be generated from model fit using brms.
An example is shown in Figure 6. This figure was generated by typing the following
command, which compares the data with 100 predicted samples:

pp_check(m1M, nsamples = 100)

Here, the observed data are plotted alongside the predicted data generated by the
model. If the predicted and observed data have similar distributions, we can conclude
that the model has a reasonable fit.

There is an obvious drawback to this approach: one is evaluating the model against
the very data that was used to estimate the parameters. It should not be surprising
that the model predicts data that were used to fit the parameters! However, when
model assumptions are grossly violated, even this easy test will fail. For example,
if there are some (say, 5%) 0 ms VOTs in a data-set (e.g., due to data loss or some
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other reason), or if there is a mixture of distributions generating the data, and the
model assumes a Gaussian likelihood, the posterior predictive distributions and the
distribution of the data will not line up. For a real-life example of such a situation,
see Vasishth et al. (2017). In Figure 7, we use the Mandarin data to simulate such
a situation by randomly replacing 5% of the data with 0 ms values. The mismatch
between the data and the posterior predictive values is clear visually.

0 40 80 120 160

y
y rep

Figure 7: An artificial example of how a mismatch between the model assumptions and the data
can lead to poor posterior predictive fits. Here, 5% of the Mandarin VOT values were randomly
replaced with 0 ms values and the same model as the one for research question 1 was fit. Now the
posterior predictive check shows that the lack of fit between the data and the predicted values.

A better approach for evaluating the predictive performance of a model may be
to test the model’s predictions against new data, or against held out subsets of data
(Vehtari and Ojanen, 2012; Gelman et al., 2014; Piironen and Vehtari, 2015). This
procedure is called k-fold cross validation. Another variant is called leave-one-out
(LOO) cross-validation; in LOO, we leave one data point out and fit the model, and
then predict the held-out data (Vehtari et al., 2015a). The distance between the
predicted and observed data can then be used to quantify the relative predictive error
when comparing competing models. The brms package provides tools for doing these
kinds of model evaluations. In brms one can do an approximation of LOO cross-
validation using the built-in function loo (Vehtari et al., 2015b). In the above example
for LOO, the function call is simple: loo(m1M, m0M). The output of this command in
the present case would be a quantity called the LOO Information Criterion (LOOIC)
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loo(m1M, m0M)

## LOOIC SE

## m1M 1653.25 22.32

## m0M 1654.69 22.59

## m1M - m0M -1.44 2.17

Listing 8: Model comparison using PSIS-LOO. A smaller value of LOOIC indicates a model with
better predictions.

for each model; this quantifies the estimated predictive error, and displayed alongside
it is its standard error. The function loo also computes the difference in estimated
predictive error between the two models, along with a standard error of the difference.
These two quantities can then be used to compare the two models: we compute
the difference in LOOIC values of the two models (∆LOOIC), and then use the
standard error to determine whether the difference in LOOIC includes 0 as a value
by computing ∆LOOIC ± 2 × SE.

Listing 8 shows the output of the model comparison using LOO. Here, the
difference in predictive error, the final line in the output, is ∆LOOIC ± 2 × SE =
−1.44 ± 2.17 = −5.78, 2.91. The Bayes factor based hypothesis test showed some
weak evidence in favor of m1M, LOO shows virtually no difference between the models.
This is because the experimental manipulation produced a very small change in the
predictive performance of m1M in comparison with m0M. This absence of a difference
in predictive performance does not mean that small effects are not important for
evaluating a phonetic theory. In general, even with moderate sample size, it can be
difficult to compare nested hierarchical models (such as linear mixed models) based
on predictive performance (Wang and Gelman, 2014).

This method of model selection is useful, however, when one is interested in
comparing the predictive performance of very different competing models. For fully
worked examples of this approach (with reproducible code and data) in the context of
cognitive modeling in psycholinguistics, see Nicenboim and Vasishth (2018); Vasishth
et al. (2017).

Thus, our analysis demonstrates how a complete data analysis can be carried out
in the Bayesian framework. To recapitulate the steps:

1. Explore the data using graphical tools; visualize the relationships between
variables of interest.

2. Define model(s) and priors.

3. Fit model(s) to data.
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4. Check for convergence (Rhat, n eff, trace plots).

5. Carry out inference by

(a) summarizing and displaying posterior distributions, or
(b) Bayes factors, or
(c) evaluating predictive performance of competing models using k-fold cross-

validation or approximations of leave-one-out cross-validation.

A Bayesian analysis is clearly more involved than a frequentist one and requires
some thought and judgment when defining priors. The models can take a long
time to compile, which can be quite frustrating. However, the reward is substantial:
one can turn the focus to quantitative estimates of effect sizes. This is much more
informative than the significant/not-significant distinction, as discussed earlier. When
quantitative models exist, these empirical estimates can be compared against model
predictions. In cases where quantitative models don’t yet exist, empirical estimates
provide the basis for developing such models.

In the remainder of the paper, we address the other two questions we posed, and
in doing so, demonstrate the flexibility of the Bayesian framework.

3.2. The effect of typical vowel duration on VOT

In order to investigate the effect of vowel duration on VOT, we can use the vowel
duration for each participant as a predictor to a model in the same way we used
gender before; the only difference is that the vowel duration is a continuous measure,
whereas gender was a categorical variable that we coded using sum contrasts.

One question that arises here is: How do we estimate the vowel duration for
each speaker? One possibility is to take the mean vowel durations from the same
long-lag stop trials that provide the VOT values and use those as a predictor; another
is to take the mean vowel durations from the unaspirated (Mandarin) and voiced
(English) trials. We take the second alternative in this paper in order to avoid using
information from the long-lag trials twice in the same model.

Figure 8 shows, for the two languages, the relationship between the mean VOTs
and mean vowel duration, along with the standard errors of each mean (the error bars).
This uncertainty expressed by the standard deviation arises because we measure each
participant’s vowel duration and VOT values multiple times, and these measurements
will naturally have some error about the (unknown) true value for that participant.

Looking at Figure 8, it seems that there is a linear relationship between mean
vowel duration and mean VOT in both languages. A linear model fit to the data
yields the following estimates for Mandarin: mean 0.26, 95% confidence interval -0.02,
0.53. For English, the estimates are: 0.2, 95% confidence interval -0.18, 0.59.
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Figure 8: Mean VOT values are shown against mean vowel duration in the two languages; the error
bars represent standard errors of each measure. There seems to be a positive relationship between
the means; we see this from the linear regression line fitted to the means. But this linear fit does
not take the uncertainty of these estimated means into account.
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However, what these linear models do not take into account is the uncertainty of
each of the estimated mean values. It is well-known that aggregating data in this
way can lead to correlations arising from ignoring the relevant variance components.2

In our models, we will take the measurement errors of the mean VOT and
mean vowel duration estimates into account. Thus, if the VOT and vowel duration
estimated for one participant i is VOTi and vduri, we can also record the standard
errors of these estimates, and take that uncertainty into account in our model. Such a
measurement error model is straightforward to implement in brms, and is shown in
Listing 9. Here, we define priors for the intercept and slope fixed effect, and for the
standard deviation of the residuals. The predictor includes not only vowel duration
but also the corresponding standard error; this is written me(c meanvdur, sevdur),
where c meanvdur is the centered mean vowel duration, and sevdur is the standard
error of the mean vowel duration. For defining the prior for this predictor, we
use the concatenation of the string me(c meanvdur, sevdur), with the brackets
and commas stripped out: mec meanvdursevdur. This is just how brms deals with
this parameter name. We chose a Cauchy(0, 5) prior for the predictor; this prior
assumes “fat tails”, which means that values far from 0 are considered to be possible.
As an exercise, the reader may wish to change this prior to Normal(0, 10) to see
whether the posterior changes substantially (it should not). The dependent variable,
meanVOT, also has a standard error associated with it, and this is expressed in brms

by writing meanVOT | se(seVOT). An important detail in brms syntax when fitting a
measurement error model on the dependent variable is that residual error is estimated
by adding the term (1 | subject).

3.3. Interpreting the results

The estimates from the two measurement error models (for Mandarin and English)
are shown in Tables 2 and 3. Such a tabular summary is an alternative way to
summarize the posterior distributions of interest. The 95% credible intervals show
that for both languages, there isn’t any evidence for an effect of vowel duration
on VOT: the estimates are near 0 now. This is because the standard errors of the
estimates for VOT and for vowel duration add uncertainty to the estimates.

These results could mean that mean vowel duration is not a good measure of
speech rate (which might yet have an effect on VOT; cf. Kessinger and Blumstein,

2An analogous problem arises when we use repeated measures ANOVA; an effect that is “not
significant” using linear mixed models can become “significant” once the data are aggregated by
averaging over sets of items (or over groups of participants) and then analyzed using repeated
measures ANOVA.
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## data frame used:

head(meansM)

## # A tibble: 6 x 5

## subject meanVOT seVOT c_meanvdur sevdur

## <chr> <dbl> <dbl> <dbl> <dbl>

## 1 F01 105.7 3.791951 -5.3116317 11.63752

## 2 F02 86.7 4.158125 11.5364481 13.66959

## 3 F03 97.8 4.623130 0.8793482 14.72106

## 4 F04 84.9 4.677250 26.1910909 13.35989

## 5 F05 84.6 4.492463 -1.1088362 13.03397

## 6 F06 98.6 4.099322 44.1128520 13.84189

priors_cauchy <- c(set_prior("normal(0, 200)", class = "Intercept"),

set_prior("cauchy(0, 5)", class = "b",

coef = "mec_meanvdursevdur"),

set_prior("normal(0, 20)", class = "sdme"),

set_prior("normal(0, 20)", class = "sd"))

m2M_error <- brm(formula = meanVOT | se(seVOT) ~ me(c_meanvdur, sevdur) +

(1 | subject),

data = meansM, family = gaussian(), prior = priors_cauchy,

iter = 2000, chains = 4,

control = list(adapt_delta = 0.999,

max_treedepth=15))

Listing 9: Measurement error model, investigating the effect of vowel duration on VOT in Mandarin.

29



Estimate lower upper
Intercept 85.92 79.36 95.1

mean vowel duration 0.65 -0.32 2.61

Table 2: Estimates from the measurement error model for Mandarin.

Estimate lower upper
Intercept 86.55 49.26 124.42

mean vowel duration 1.6 -8.14 10.12

Table 3: Estimates from the measurement error model for English.

1997 and Pind, 1995). Another possibility is that the effect is very small, and that
we do not have enough data to draw any conclusions. As always, an important
question to ask is, how do the present data relate to existing work on this topic? A
quantitative evaluation of the current data in the context of existing estimates is a
very important but underappreciated tool. If we had a systematic way to summarize
our prior knowledge on this question, we could have incorporated this knowledge by
using informative priors in the analysis.

3.4. Cross-linguistic differences between Mandarin and English for questions 1 and 2

We can address this question by fitting two separate hierarchical models: (a)
the main effects and interaction of language and gender, (b) the main effects and
interaction of mean vowel duration and language. For simplicity, we ignore measure-
ment error on the mean vowel duration, but this can be easily added to the model if
necessary.

Estimate lower upper
Intercept 83.84 76.79 90.63

gender 10.03 2.56 17.38
lang 3.06 -9.81 16.10

gender:lang 6.93 -8.18 22.59

Table 4: The main effects of gender and language, and their interaction.

As Tables 4 and 5 show, we see some evidence for gender (mean 10 ms, 95%
credible interval 3, 17); and some weak evidence for vowel duration affecting VOT
(mean 4 ms, 95% credible interval 0, 8). All other effects have wide uncertainty and
have means not far from 0.
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Estimate lower upper
Intercept 83.52 76.85 90.44

cmeanvdur 3.83 -0.34 8.08
lang 3.13 -10.54 16.90

cmeanvdur:lang 1.75 -6.11 9.83

Table 5: The main effects of centered and scaled vowel duration and language, and their interaction.

4. Concluding remarks

We have attempted to provide a practical entry point into Bayesian modeling
using the package brms, which serves as a convenient and easy-to-use front-end to
the probabilistic programming language Stan. Other ways to use Stan are through
the front-end rstanarm (Gabry and Goodrich, 2016), and the R package rstan (Guo
et al., 2016). The package rstanarm has fewer customizations possible compared to
brms, but has precompiled code for commonly used models, which leads to faster
data analysis. Other versions also exist for python (pystan), Matlab, Mathematica,
Julia, Stata; see mc-stan.org for more detail on these alternatives.

In order to develop a better understanding of this approach to analyzing data,
it is of course important to acquire experience and further exposure to fitting and
interpreting models. Several useful books have recently appeared that are intended for
a general audience. Two important recent ones are Kruschke (2014) and McElreath
(2016); these provide a complete introduction to different aspects of Bayesian modeling.

Bayesian methods also find application in cognitive modeling; two useful in-
troductory books are Lee and Wagenmakers (2014) and Farrell and Lewandowsky
(2018).
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