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1 Foundations

1.1 Random variable

A random variable X is a function X : S → R that associates to each outcome
ω ∈ S exactly one number X(ω) = x.

SX is all the x’s (all the possible values of X, the support of X). I.e., x ∈ SX .
Discrete example: number of coin tosses till H

• X : ω → x

• ω: H, TH, TTH,. . . (infinite)

• x = 0, 1, 2, . . . ;x ∈ SX
We will write X(ω) = x:
H → 1

TH → 2

...
The discrete binomial random variable X will be defined by

1. the function X : S → R, where S is the set of outcomes (i.e., outcomes are
ω ∈ S).

2. X(ω) = x, and SX is the support of X (i.e., x ∈ SX).

3. A PMF is defined for X:
pX : SX → [0, 1] (1)

pX(x) =

(
n

x

)
θx(1− θ)n−x (2)
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4. A CDF is defined for X:

F (a) =
∑

all x≤a

p(x) (3)

Continuous example: fixation durations in reading (the normal distribution)

• X : ω → x

• ω: 145.21, 352.43, 270, . . .

• x = 145.21, 352.43, 270, . . . ;x ∈ SX

The pdf of the normal distribution is:

fX(x) =
1√

2πσ2
e−

1
2

(x−µ)2

σ2 , −∞ < x <∞ (4)

We write X ∼ norm(mean = µ, sd = σ).
The associated R function for the pdf is dnorm(x, mean = 0, sd = 1), and

the one for cdf is pnorm.
Note the default values for µ and σ are 0 and 1 respectively. Note also that R

defines the PDF in terms of µ and σ, not µ and σ2 (σ2 is the norm in statistics
textbooks).

Table 1: Important R functions relating to random variables.

Discrete Continuous
Example: Binomial(n,θ) Normal(µ, σ)
Likelihood fn dbinom dnorm
Prob X=x dbinom, pbinom always 0
Prob X ≥ x,X ≤ x, x1 < X < x2 pbinom pnorm
Inverse cdf qbinom qnorm
Generate fake data rbinom rnorm

1.2 Maximum likelihood estimate

For the normal distribution, where X ∼ N(µ, σ), we can get MLEs of µ and σ by
computing:

µ̂ =
1

n

∑
xi = x̄ (5)
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and

σ̂2 =
1

n

∑
(xi − x̄)2 (6)

you will sometimes see the “unbiased” estimate (and this is what R computes)
but for large sample sizes the difference is not important:

σ̂2 =
1

n− 1

∑
(xi − x̄)2 (7)

The significance of these MLEs is that, having assumed a particular underlying
pdf, we can estimate the (unknown) parameters (the mean and variance) of the
distribution that generated our particular data.

This leads us to the distributional properties of the mean under repeated
sampling.

1.3 The central limit theorem

For large enough sample sizes, the sampling distribution of the means will be
approximately normal, regardless of the underlying distribution (as long as this
distribution has a mean and variance defined for it).

1. So, from a sample of size n, and sd σ or an MLE σ̂, we can compute

the standard deviation of the sampling distribution of the means.

2. We will call this standard deviation the estimated standard error.

SE = σ̂√
n

I say estimated because we are estimating SE using an an estimate of σ.

The standard error allows us to define a so-called 95% confidence interval:

µ̂± 2SE (8)

So, for the mean, we define a 95% confidence interval as follows:

µ̂± 2
σ̂√
n

(9)

What does the 95% CI mean?

3



2 The t-test

2.1 The hypothesis test

Suppose we have a random sample of size n, and the data come from a N(µ, σ)
distribution.

We can estimate sample mean x̄ = µ̂ and σ̂, which in turn allows us to estimate
the sampling distribution of the mean under (hypothetical) repeated sampling:

N(x̄,
σ̂√
n

) (10)

The NHST approach is to set up a null hypothesis that µ has some fixed value.
For example:

H0 : µ = 0 (11)

This amounts to assuming that the true distribution of sample means is (ap-
proximately) normally distributed and centered around 0, with the standard error
estimated from the data.

The intuitive idea is that

1. if the sample mean x̄ is near the hypothesized µ (here, 0), the data are
(possibly) “consistent with” the null hypothesis distribution.

2. if the sample mean x̄ is far from the hypothesized µ, the data are inconsistent
with the null hypothesis distribution.

We formalize “near” and “far” by determining how many standard errors the
sample mean is from the hypothesized mean:

t× SE = x̄− µ (12)

This quantifies the distance of sample mean from µ in SE units.
So, given a sample and null hypothesis mean µ, we can compute the quantity:

tobserved =
x̄− µ
SE

(13)

We will call this the observed t-value.
The random varible T:

T =
X̄ − µ
SE

(14)

has a t-distribution, which is defined in terms of the sample size n. We will
express this as: T ∼ t(n− 1)
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Note also that, for large n, T ∼ N(0, 1).
Thus, given a sample size n, and given our null hypothesis, we can draw t-

distribution corresponding to the null hypothesis distribution.
For large n, we could even use N(0,1), although it is traditional in psychology

and linguistics to always use the t-distribution no matter how large n is.

2.2 The hypothesis testing procedure

So, the null hypothesis testing procedure is:

1. Define the null hypothesis: for example, H0 : µ = 0.

2. Given data of size n, estimate x̄, standard deviation s, standard error s/
√
n.

3. Compute the t-value:

tobserved =
x̄− µ
s/
√
n

(15)

4. Reject null hypothesis if t-value is large.

2.2.1 Rejection region

So, for large sample sizes, if | t |> 2 (approximately), we can reject the null
hypothesis.

For a smaller sample size n, you can compute the exact critical t-value:

qt(0.025,df=n-1)

This is the critical t-value on the left-hand side of the t-distribution. The
corresponding value on the right-hand side is:

qt(0.975,df=n-1,lower.tail=FALSE)

Their absolute values are of course identical (the distribution is symmetric).
Given iid data y:

t.test(y)

Given two conditions’ paired data vectors cond a, cond b (note that the order
in which you write the vectors will determine the sign of the observed t-value):
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t.test(cond_a,cond_b,paired=TRUE)

## identical to above:

t.test(cond_a-cond_b)

Given data in long form, with the dependent variable written as y and the
conditions marked by a column called cond:

t.test(y ~ cond,,paired=TRUE)

3 Type I, II error, power

Reality: H0 TRUE H0 FALSE
Decision: ‘reject’: α 1 − β

Type I error Power

Decision: ‘fail to reject’: 1− α β
Type II error
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4 Type M, S error

If your true effect size is believed to be D, then we can compute (apart from
statistical power) these error rates, which are defined as follows:

1. Type S error: the probability that the sign of the effect is incorrect, given
that the result is statistically significant.

2. Type M error: the expectation of the ratio of the absolute magnitude of
the effect to the hypothesized true effect size, given that result is significant.
Gelman and Carlin also call this the exaggeration ratio, which is perhaps
more descriptive than “Type M error”.
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