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Introduction to Bayesian data analysis

Recall Bayes’ rule:

When A and B are observable events, we can state the rule as follows:

P(A | B) = P(B | A)P(A)
P(B) (1)

Note that P(·) is the probability of an event.
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Introduction to Bayesian data analysis

When looking at probability distributions, we will encounter the rule in the
following form.

f (θ | data) = f (data | θ)f (θ)
f (y) (2)

Here, f (·) is a probability density, not the probability of a single event. f (y)
is called a “normalizing constant”, which makes the left-hand side a
probability distribution.

f (y) =
ˆ

f (x , θ) dθ =
ˆ

f (y | θ)f (θ) dθ (3)
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Introduction to Bayesian data analysis

If θ is a discrete random variable taking one value from the set {θ1, . . . , θn},
then

f (y) =
n∑

i=1
f (y | θi )P(θ = θi ) (4)
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Introduction to Bayesian data analysis

Without the normalizing constant, we have the relationship:

f (θ | data) ∝ f (data | θ)f (θ) (5)

Posterior ∝ Likelihood× Prior (6)
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Example 1: Binomial Likelihood, Beta prior, Beta
posterior

The likelihood function will tell us P(data | θ):
dbinom(46, 100, 0.5)

## [1] 0.057958

Note that

P(data | θ) ∝ θ46(1− θ)54 (7)

So, to get the posterior, we just need to work out a prior distribution f (θ).

f (θ | data) ∝ f (data | θ)f (θ) (8)
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Example 1: Binomial Likelihood, Beta prior, Beta
posterior
For the prior, we need a distribution that can represent our uncertainty
about the probabiliy θ of success. The Beta distribution is commonly used
as prior for proportions. We say that the Beta distribution is conjugate to
the binomial density; i.e., the two densities have similar functional forms.

The pdf is

f (x) =
{ 1

B(a,b)xa−1(1− x)b−1 if 0 < x < 1
0 otherwise

where

B(a, b) =
ˆ 1

0
xa−1(1− x)b−1 dx
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Example 1: Binomial Likelihood, Beta prior, Beta
posterior

In R, we write X ∼ beta(shape1 = α, shape2 = β). The associated R
function is dbeta(x, shape1, shape2).

The mean and variance are

E [X ] = a
a + b and Var(X ) = ab

(a + b)2 (a + b + 1)
. (9)
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Example 1: Binomial Likelihood, Beta prior, Beta
posterior

The Beta distribution’s parameters a and b can be interpreted as (our
beliefs about) prior successes and failures, and are called hyperparameters.
Once we choose values for a and b, we can plot the Beta pdf. Here, we
show the Beta pdf for three sets of values of a,b.
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Example 1: Binomial Likelihood, Beta prior, Beta
posterior
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Example 1: Binomial Likelihood, Beta prior, Beta
posterior

If we don’t have much prior information, we could use a=b=1; this
gives us a uniform prior; this is called an uninformative prior or
non-informative prior (although having no prior knowledge is, strictly
speaking, not uninformative).

If we have a lot of prior knowledge and/or a strong belief that θ has a
particular value, we can use a larger a,b to reflect our greater certainty
about the parameter.

Notice that the larger our parameters a and b, the narrower the spread
of the distribution; this makes sense because a larger sample size (a
greater number of successes a, and a greater number of failures b) will
lead to more precise estimates.
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Example 1: Binomial Likelihood, Beta prior, Beta
posterior

Just for the sake of argument, let’s take four different beta priors, each
reflecting increasing certainty.

1 Beta(a=2,b=2)
2 Beta(a=3,b=3)
3 Beta(a=6,b=6)
4 Beta(a=21,b=21)

Each reflects a belief that θ = 0.5, with varying degrees of (un)certainty.
Now we just need to plug in the likelihood and the prior:

f (θ | data) ∝ f (data | θ)f (θ) (10)
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Example 1: Binomial Likelihood, Beta prior, Beta
posterior
The four corresponding posterior distributions would be:

f (θ | data) ∝ [θ46(1− θ)54][θ2−1(1− θ)2−1] = θ48−1(1− θ)56−1 (11)

f (θ | data) ∝ [θ46(1− θ)54][θ3−1(1− θ)3−1] = θ49−1(1− θ)57−1 (12)

f (θ | data) ∝ [θ46(1− θ)54][θ6−1(1− θ)6−1] = θ52−1(1− θ)60−1 (13)

f (θ | data) ∝ [θ46(1− θ)54][θ21−1(1− θ)21−1] = θ67−1(1− θ)75−1 (14)
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Example 1: Binomial Likelihood, Beta prior, Beta
posterior

We can now visualize each of these triplets of priors, likelihoods and
posteriors. Note that I use the beta to model the likelihood because this
allows me to visualize all three (prior, lik., posterior) in the same plot. The
likelihood function is shown in the next slide.
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Example 1: Binomial Likelihood, Beta prior, Beta
posterior
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Figure 1: Binomial likelihood function.
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Example 1: Binomial Likelihood, Beta prior, Beta
posterior

We can represent the likelihood in terms of the beta as well:
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Figure 2: Using the beta distribution to represent a binomial likelihood function.
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Example 1: Binomial Likelihood, Beta prior, Beta
posterior
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Example 2: Poisson Likelihood, Gamma prior,
Gamma posterior

This is also a contrived example. Suppose we are modeling the number of
times that a speaker says the word “the” per day.

The number of times x that the word is uttered in one day can be modeled
by a Poisson distribution:

f (x | θ) = exp(−θ)θx

x ! (15)

where the rate θ is unknown, and the numbers of utterances of the target
word on each day are independent given θ.
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Example 2: Poisson Likelihood, Gamma prior,
Gamma posterior

We are told that the prior mean of θ is 100 and prior variance for θ is 225.
This information could be based on the results of previous studies on the
topic.

In order to visualize the prior, we first fit a Gamma density prior for θ based
on the above information.

Note that we know that for a Gamma density with parameters a, b, the
mean is a

b and the variance is a
b2 . Since we are given values for the mean

and variance, we can solve for a,b, which gives us the Gamma density.

If a
b = 100 and a

b2 = 225, it follows that a = 100× b = 225× b2 or
100 = 225× b, i.e., b = 100

225 .
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Example 2: Poisson Likelihood, Gamma prior,
Gamma posterior

This means that a = 100×100
225 = 10000

225 . Therefore, the Gamma distribution
for the prior is as shown below (also see Fig 3):

θ ∼ Gamma(10000225 ,
100
225) (16)
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Example 2: Poisson Likelihood, Gamma prior,
Gamma posterior
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Figure 3: The Gamma prior for the parameter theta.
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Example 2: Poisson Likelihood, Gamma prior,
Gamma posterior

Given that

Posterior ∝ Prior Likelihood (17)

and given that the likelihood is:

L(x | θ) =
n∏

i=1

exp(−θ)θxi

xi !

=exp(−nθ)θ
∑n

i xi∏n
i=1 xi !

(18)
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Example 2: Poisson Likelihood, Gamma prior,
Gamma posterior

we can compute the posterior as follows:

Posterior = [exp(−nθ)θ
∑n

i xi∏n
i=1 xi !

][b
aθa−1 exp(−bθ)

Γ(a) ] (19)

Disregarding the terms x !, Γ(a), ba, which do not involve θ, we have

Posterior ∝ exp(−nθ)θ
∑n

i xi θa−1 exp(−bθ)

=θa−1+
∑n

i xi exp(−θ(b + n))
(20)
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Example 2: Poisson Likelihood, Gamma prior,
Gamma posterior

First, note that the Gamma distribution in general is
Gamma(a, b) ∝ θa−1 exp(−θb). So it’s enough to state the above as a
Gamma distribution with some parameters a, b.

If we equate a∗ − 1 = a − 1 +
∑n

i xi and b∗ = b + n, we can rewrite the
above as:

θa∗−1 exp(−θb∗) (21)
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Example 2: Poisson Likelihood, Gamma prior,
Gamma posterior

This means that a∗ = a +
∑n

i xi and b∗ = b + n. We can find a constant k
such that the above is a proper probability density function, i.e.:

ˆ ∞
−∞

kθa∗−1 exp(−θb∗) = 1 (22)

Thus, the posterior has the form of a Gamma distribution with parameters
a∗ = a +

∑n
i xi , b∗ = b + n. Hence the Gamma distribution is a conjugate

prior for the Poisson.
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Concrete example given data
Suppose the number of ‘’the” utterances is: 115, 97, 79, 131.

Suppose that the prior is Gamma(a=10000/225,b=100/225). The data are
as given; this means that

∑n
i xi = 422 and sample size n = 4. It follows

that the posterior is

Gamma(a∗ = a +
n∑
i

xi , b∗ = b + n) =Gamma(10000225 + 422, 4 + 100
225)

=Gamma(466.44, 4.44)
(23)

The mean and variance of this distribution can be computed using the fact
that the mean is a∗

b∗ = 466.44/4.44 = 104.95 and the variance is
a∗
b∗2 = 466.44/4.442 = 23.66.
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Concrete example given data

### load data:
data<-c(115,97,79,131)

a.star<-function(a,data){
return(a+sum(data))

}

b.star<-function(b,n){
return(b+n)

}

new.a<-a.star(10000/225,data)
new.b<-b.star(100/225,length(data))
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Concrete example given data

### post. mean
post.mean<-new.a/new.b
### post. var:
post.var<-new.a/(new.b^2)

new.data<-c(200)

new.a.2<-a.star(new.a,new.data)
new.b.2<-b.star(new.b,length(new.data))

### new mean
new.post.mean<-new.a.2/new.b.2
### new var:
new.post.var<-new.a.2/(new.b.2^2)
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The posterior is a weighted mean of prior and
likelihood

We can express the posterior mean as a weighted sum of the prior mean and
the maximum likelihood estimate of θ.

The posterior mean is:

a∗
b∗ = a +

∑
xi

n + b (24)

This can be rewritten as

a∗
b∗ = a + nx̄

n + b (25)

Dividing both the numerator and denominator by b:
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The posterior is a weighted mean of prior and
likelihood

a∗
b∗ = (a + nx̄)/b

(n + b)/b = a/b + nx̄/b
1 + n/b (26)
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The posterior is a weighted mean of prior and
likelihood

Since a/b is the mean m of the prior, we can rewrite this as:

a/b + nx̄/b
1 + n/b =

m + n
b x̄

1 + n
b

(27)

We can rewrite this as:
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The posterior is a weighted mean of prior and
likelihood

m + n
b x̄

1 + n
b

= m × 1
1 + n

b
+

n
b x̄

1 + n
b

(28)

This is a weighted average: setting w1 = 1 and w2 = n
b , we can write the

above as:

m w1
w1 + w2

+ x̄ w2
w1 + w2

(29)
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The posterior is a weighted mean of prior and
likelihood

A n approaches infinity, the weight on the prior mean m will tend towards 0,
making the posterior mean approach the maximum likelihood estimate of
the sample.

In general, in a Bayesian analysis, as sample size increases, the likelihood
will dominate in determining the posterior mean.

Regarding variance, since the variance of the posterior is:

a∗
b∗2 = (a + nx̄)

(n + b)2 (30)

as n approaches infinity, the posterior variance will approach zero: more
data will reduce variance (uncertainty).
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Summary

We saw two examples where we can do the computations to derive the
posterior using simple algebra. There are several other such simple cases.
However, in realistic data analysis settings, we cannot specify the posterior
distribution as a particular density. We can only specify the priors and the
likelihood.

For such cases, we need to use MCMC sampling techniques so that we can
sample from the posterior distributions of the parameters.

Some sampling approaches are:

Gibbs sampling using inversion sampling
Metropolis-Hasting
Hamiltonian Monte Carlo

We won’t discuss these in this course.
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