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Linear modeling

Suppose y is a vector of continuous responses; assume for now that it is
coming from a normal distribution:

y ∼ Normal(µ, σ)

This is the simple linear model:

y = µ+ ε where ε ∼ Normal(0, σ)

There are two parameters, µ, σ, so we need priors on these. We expand on
this simple model next.
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Linear modeling
Recall from the foundations lecture that the way we will conduct data
analysis is as follows.

Given data, specify a likelihood function.
Specify prior distributions for model parameters.
Evaluate whether model makes sense, using fake-data simulation, prior
predictive and posterior predictive checks, and (if you want to claim a
discovery) calibrating true and false discovery rates.
Using software, derive marginal posterior distributions for parameters
given likelihood function and prior density. I.e., simulate parameters to
get samples from posterior distributions of parameters using some
Markov Chain Monte Carlo (MCMC) sampling algorithm.
Check that the model converged using model convergence diagnostics,
Summarize posterior distributions of parameter samples and make your
scientific decision.

We will now work through some specific examples to illustrate how the data
analysis process works.
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Example 1: A single subject pressing a button
repeatedly
As a first example, we will fit a simple linear model to some reaction time
data.

The file button_press.dat contains data of a subject pressing the space
bar without reading in a self-paced reading experiment.
Preprocessing of the data
## type item wordn word y
## 356 filler 3 0 Vielleicht 214
## 357 filler 3 1 haben 182
## 358 filler 3 2 die_Zahnärztin 179
## 359 filler 3 3 aus_Bonn 177
## 360 filler 3 4 die_Patienten 183
## 361 filler 3 5 verklagt. 162
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 110 156 166 169 181 409
## [1] "data.frame"
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Visualizing the data
It is a good idea to look at the distribution of the data before doing
anything else. See Figure 1.
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Figure 1: Visualizing the data.

The data looks a bit skewed, but we ignore this for the moment.
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Define the likelihood function

Let’s model the data with the following assumptions:

There is a true underlying time, µ, that the participant needs to press
the space-bar.
There is some noise in this process.
The noise is normally distributed (this assumption is questionable given
the skew but; we fix this assumption later).
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Define the likelihood function

This means that the likelihood for each observation i will be:

yi ∼ Normal(µ, σ) (1)

where i = 1 . . .N.

This is just the simple linear model:

y = µ+ ε where ε ∼ Normal(0, σ) (2)
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Define the priors for the parameters

We are going to use the following priors for the two parameters in this
model:

µ ∼ Normal(0, 2000)
σ ∼ Normal(0, 500) truncated so that σ > 0

(3)
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Define the priors for the parameters

In order to decide on a prior for the parameters, always visualize them first.
See Figure 2.
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Figure 2: Visualizing the priors for example 1.
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Prior predictive checks

With these priors, we are going to generate something called the prior
predictive distribution. This helps us check whether the priors make sense.

Formally, we want to know the density f (·) of data points y1, . . . , n, given a
vector of priors Θ. In our example, Θ = 〈µ, σ〉. The prior predictive density
is:

f (y1, . . . , yn) =
ˆ

f (y1) · f (y2) · · · f (yn)f (Θ) dΘ (4)
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Prior predictive checks

In essence, we integrate out the parameters. Here is one way to do it in R:

Take one sample from each of the priors
Generate nobs data points using those samples

This would give us a matrix containing nsim * nobs generated data. We can
then plot the prior predictive densities generated.
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Prior predictive checks

library(extraDistr) ## needed for half-normal distribution
## number of simulations
nsim<-1000
## number of observations generated each time:
nobs<-100
y<-matrix(rep(NA,nsim*nobs),ncol = nobs)
mu<-rnorm(nsim,mean=0,sd=2000)
## truncated normal, cut off at 0:
sigma<-rtnorm(nsim,mean=0,sd=500,a=0)

for(i in 1:nsim){
y[i,]<-rnorm(nobs,mean=mu[i],sd=sigma[i])
}

Shravan Vasishth and Bruno Nicenboim 03 Linear modeling SMLP 2019 12 / 68



Prior predictive checks
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Prior predictive checks

We can try to redefine the prior for µ to have only positive values, and then
check again. We still get some negative values, but that is because we are
assuming that

y ∼ Normal(µ, σ)

which will have negative values for small µ and large σ.
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Prior predictive checks

y<-matrix(rep(NA,nsim*nobs),ncol = nobs)
mu<-rtnorm(nsim,mean=0,sd=2000,a=0)
for(i in 1:nsim){
y[i,]<-rnorm(nobs,mean=mu[i],sd=sigma[i])
}
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Prior predictive checks
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Prior predictive checks

We can generate a prior predictive distribution using Stan as follows.

First, we define a Stan model that defines the priors and defines how the
data are to be generated.

Documentation on Stan is available at mc-stan.org.
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Prior predictive checks
priorpred<-"data {

int N;
}
parameters {
real<lower=0> mu;
real<lower=0> sigma;
}
model {

mu ~ normal(0,2000);
sigma ~ normal(0,500);

}
generated quantities {

vector[N] y_sim;
for(i in 1:N) {

y_sim[i] = normal_rng(mu,sigma);
}}"
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Prior predictive checks

Load RStan and brms.
## load rstan
library(rstan)
options(mc.cores = parallel::detectCores())
library(brms)
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Prior predictive checks

Then we generate the data:
## generate 100 data-points
dat<-list(N=100)

## fit model:
m1priorpred<-stan(model_code=priorpred,

data=dat,
chains = 4,
warmup = 1000,

iter = 2000)
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Prior predictive checks

## extract and plot one of the data-sets:
y_sim<-extract(m1priorpred,pars="y_sim")
str(y_sim)

## List of 1
## $ y_sim: num [1:4000, 1:100] 1277 1651 5333 2066 2378 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ iterations: NULL
## .. ..$ : NULL
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Prior predictive checks

hist(y_sim$y_sim[1,],
main="Prior predictive distribution",
xlab="y_sim",freq=FALSE)

Prior predictive distribution
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Prior predictive checks

Having satisfied outselves that the priors mostly make sense, we now fit the
model to fake data. The goal here is to ensure that the model recovers the
true underlying parameters.
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Fake-data simulation and modeling

Next, we write the Stan model, adding a likelihood in the model block:
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Fake-data simulation and modeling
m1<-"data {

int N;
real y[N]; // data

}
parameters {
real<lower=0> mu;
real<lower=0> sigma;
}
model {
mu ~ normal(0,2000);
sigma ~ normal(0,500);
y ~ normal(mu,sigma);
}
generated quantities {

vector[N] y_sim;
for(i in 1:N) {

y_sim[i] = normal_rng(mu,sigma);
}}

"
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Fake-data simulation and modeling

Then generate fake data with known parameter values (we decide what
these are):
set.seed(123)
N <- 500
true_mu <- 400
true_sigma <- 125
y <- rnorm(N, true_mu, true_sigma)

y <- round(y)
fake_data <- data.frame(y=y)
dat<-list(y=y,N=N)
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Fake-data simulation and modeling

Finally, we fit the model:
## fit model:
m1rstan<-stan(model_code=m1,

data=dat,
chains = 4,

iter = 2000)

## extract posteriors:
posteriors<-extract(m1rstan,pars=c("mu","sigma"))
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Fake-data simulation and modeling
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Figure 3: Posteriors from fake data, model m1. Vertical lines show the true values
of the parameters.
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Posterior predictive checks

Once we have the posterior distribution f (Θ | y), we can derive the
predictions based on this posterior distribution:

p(ypred | y) =
ˆ

p(ypred ,Θ | y) dΘ =
ˆ

p(ypred | Θ, y)p(Θ | y) dΘ (5)
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Posterior predictive checks

Assuming that past and future observations are conditionally independent
given Θ, i.e., p(ypred | Θ, y) = p(ypred | Θ), we can write:

p(ypred | y) =
ˆ

p(ypred | Θ)p(Θ | y) dΘ (6)

Note that we are conditioning ypred only on y , we do not condition on what
we don’t know (Θ); we integrate out the unknown parameters.
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Posterior predictive checks

This posterior predictive distribution is different from the frequentist
approach, which gives only a predictive distribution of ypred given our
estimate of θ (a point value).

In the Stan code above, we have already generated the posterior predictive
distribution, in the generated quantities block.

Shravan Vasishth and Bruno Nicenboim 03 Linear modeling SMLP 2019 31 / 68



Implementing model in brms

This model is expressed in brms in the following way. First, define the priors:
priors <- c(set_prior("normal(0, 2000)",

class = "Intercept"),
set_prior("normal(0, 500)",

class = "sigma"))
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Implementing model in brms

Then, define the generative process assumed:
m1brms<-brm(y~1,noreading_data,prior = priors,

iter = 2000,
warmup = 1000,
chains = 4,
family = gaussian(),
control = list(adapt_delta = 0.99))
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Summarizing the posteriors, and convergence
diagnostics
A graphical summary of posterior distributions of model m1 is shown in
Figure 4:
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Figure 4: Posterior distributions of the parameters in model m1.
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Summarizing the posteriors, and convergence
diagnostics
The trace plots in Figure 5 show how well the four chains are mixing:
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Figure 5: Trace plots in model m1.
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Summarizing the posteriors, and convergence
diagnostics
An alternative way to plot is shown in Figure 6.

sigma

b_Intercept

24 26 28

166 168 170 172
0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.4

sigma

b_Intercept

0 200 400 600 800 1000

0 200 400 600 800 1000
164

166

168

170

172

22

24

26

28

Chain

1

2

3

4

Figure 6: Posterior distributions and trace plots in model m1.

Shravan Vasishth and Bruno Nicenboim 03 Linear modeling SMLP 2019 36 / 68



Fitting the brms model on fake data

m1_fakebrms<-brm(y~1,fake_data,prior = priors,
iter = 2000, chains = 4,family = gaussian(),
control = list(adapt_delta = 0.99))
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Summarizing the posterior distribution: posterior
probabilities and the credible interval

We are assuming that there’s a true underlying time it takes to press the
space bar, µ, and there is normally distributed noise with distribution
Normal(0,σ) that generates the different RTs. All this is encoded in our
likelihood by assuming that RTs are distributed with an unknown true mean
µ (and an unknown standard deviation σ).
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Summarizing the posterior distribution: posterior
probabilities and the credible interval

The objective of the Bayesian model is to learn about the plausible values of
µ, or in other words, to get a distribution that encodes what we know about
the true mean of the distribution of RTs, and about the true standard
deviation, σ, of the distribution of RTs.
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Summarizing the posterior distribution: posterior
probabilities and the credible interval

Our model allows us to answer questions such as:

What is the probability that the underlying value of the mindless
press of the space bar would be over, say 170 ms?
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Summarizing the posterior distribution: posterior
probabilities and the credible interval

As an example, consider this model that we ran above.
priors <- c(set_prior("normal(0, 2000)",

class = "Intercept"),
set_prior("normal(0, 500)",

class = "sigma"))

m1brms<-brm(y~1,noreading_data,prior = priors,
iter = 2000,
warmup = 1000,
chains = 4,
family = gaussian(),
control = list(adapt_delta = 0.99))
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Summarizing the posterior distribution: posterior
probabilities and the credible interval

We now compute the posterior probability Prob(µ > 170):
mu_post<-posterior_samples(m1brms,

pars=c("b_Intercept"))$b_Intercept
mean(mu_post>170)

## [1] 0.1615
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Summarizing the posterior distribution: posterior
probabilities and the credible interval

The credible interval

The 95% credible interval can be extracted for µ as follows:
posterior_interval(m1brms,pars=c("b_Intercept"))

## 2.5% 97.5%
## b_Intercept 165.98 171.27

This type of interval is also known as a credible interval.

A credible interval demarcates the range within which we can be certain
with a certain probability that the “true value” of a parameter lies given the
data and the model.

This is very different from the frequentist confidence interval!
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Summarizing the posterior distribution: posterior
probabilities and the credible interval

The percentile interval is a type of credible interval (the most common one),
where we assign equal probability mass to each tail.

We generally report 95% credible intervals. But we can extract any interval,
a 73% interval, for example, leaves 13.5% of the probability mass on each
tail, and we can calculate it like this:
round(quantile(mu_post,prob=c(0.135,0.865)))

## 13.5% 86.5%
## 167 170
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Influence of priors and sensitivity analysis

µ ∼ Uniform(0, 5000)
σ ∼ Uniform(0, 500)

(7)

priors <- c(set_prior("uniform(0, 5000)",
class = "Intercept"),

set_prior("normal(0, 500)",
class = "sigma"))
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Influence of priors and sensitivity analysis

m2<-brm(y~1,noreading_data,prior = priors,
iter = 2000, chains = 4,family = gaussian(),
control = list(adapt_delta = 0.99))
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Influence of priors and sensitivity analysis
summary(m2)

## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: y ~ 1
## Data: noreading_data (Number of observations: 361)
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup samples = 4000
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## Intercept 168.65 1.33 165.98 171.24 2136 1.00
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sigma 25.01 0.93 23.26 26.96 2218 1.00
##
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
## is a crude measure of effective sample size, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
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Influence of priors and sensitivity analysis

In general, we don’t want our priors to have too much influence on our
posterior.

This is unless we have very good reasons for having informative priors, such
as a very small sample and a lot of prior information; an example would be
if we have data from an impaired population, which makes it hard to
increase our sample size.
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Influence of priors and sensitivity analysis

We usually center the priors on 0 and we let the likelihood dominate in
determining the posterior.

This type of prior is called weakly informative prior. Notice that a uniform
prior is not a weakly informative prior, it assumes that every value is equally
likely, zero is as likely as 5000.

You should always do a sensitivity analysis to check how influential the prior
is: try different priors and verify that the posterior doesn’t change
drastically.
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Example 2: Investigating adaptation effects

More realistically, we might have run the small experiment to find out
whether the participant tended to speedup (practice effect) or slowdown
(fatigue effect) while pressing the space bar.
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Example 2: Investigating adaptation effects

Preprocessing the data
We need to have data about the number of times the space bar was
pressed for each observation, and add it to our list.
It’s a good idea to center the number of presses (a covariate) to have a
clearer interpretation of the intercept.
In general, centering predictors is always a good idea, for
interpretability and for computational reasons.
See Schad et al. (2018) for details on this point.
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Example 2: Investigating adaptation effects

Preprocessing the data
# create a new vector representing trial id in the data frame
noreading_data$presses <- 1:nrow(noreading_data)
# center the vector
noreading_data$c_presses <- noreading_data$presses -

mean(noreading_data$presses)
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Example 2: Investigating adaptation effects

Probability model
Our model changes, because we have a new parameter.

yi ∼ Normal(α + pressesi · β, σ) (8)

where i = 1 . . .N
And we are going to use the following priors:

α ∼ Normal(0, 2000)
β ∼ Normal(0, 500)
σ ∼ Normal(0, 500) truncated so that σ > 0

(9)
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Example 2: Investigating adaptation effects

Probability model
We are basically fitting a linear model, α represents the intercept (namely,
the grand mean of the RTs), and β represents the slope.
What information are the priors encoding?
Do the priors make sense?
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Example 2: Investigating adaptation effects

Probability model
We’ll write this in brms as follows.
priors <- c(set_prior("normal(0, 2000)",

class = "Intercept"),
set_prior("normal(0, 500)",

class = "b",
coef="presses"),

set_prior("normal(0, 500)",
class = "sigma"))
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Example 2: Investigating adaptation effects

Probability model

m2<-brm(y~1+presses,noreading_data,prior = priors,
iter = 2000, chains = 4,family = gaussian(),
control = list(adapt_delta = 0.99))

## Compiling the C++ model
## Start sampling
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Example 2: Investigating adaptation effects

Posteriors
b_Intercept b_presses sigma

145 150 155 160 0.04 0.06 0.08 0.10 0.12 0.14 20 22 24 26
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Example 2: Investigating adaptation effects

Summarizing the posterior and inference
We’ll need to examine what happens with β. The summary gives us the
relevant information:
m2_post_samp_b <- posterior_samples(m2, "^b")
beta_samples <- m2_post_samp_b$b_presses
beta_mean<-mean(beta_samples)
quantiles_beta <- quantile(beta_samples,

prob=c(0.025,0.975))
beta_low<-quantiles_beta[1]
beta_high<-quantiles_beta[2]
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Example 2: Investigating adaptation effects

Posterior predictive checks
Let’s say we know that our model is working as expected, since we already
used fake data to test the recovery of the parameters.
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Example 2: Investigating adaptation effects

Posterior predictive checks
To do posterior predictive checks for our last example, using brms, we need
to do:

100 200 300 400

y
y rep

Figure 7: Posterior predictive check of model m2.
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Example 2: Investigating adaptation effects

Using the log-normal likelihood
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Figure 8: The log-normal distribution.
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Example 2: Investigating adaptation effects

Using the log-normal likelihood
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Figure 9: Exponentiated samples from a log-normal distribution.
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Example 2: Investigating adaptation effects

Re-fit the model assuming a log-normal likelihood
If we assume that RTs are log-normally distributed, we’ll need to change our
model:

Yi ∼ LogNormal(α + pressesi · β, σ) (10)

where i = 1 . . .N
But now the scale of our priors needs to change! They are no longer in
milliseconds.

α ∼ Normal(0, 10)
β ∼ Normal(0, 1)
σ ∼ Normal(0, 2) truncated so that σ > 0

(11)
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Example 2: Investigating adaptation effects
Re-fit the model assuming a log-normal likelihood

priors_log <- c(set_prior("normal(0, 10)",
class = "Intercept"),

set_prior("normal(0, 1)",
class = "b",
coef="presses"),

set_prior("normal(0, 2)",
class = "sigma"))

m2_logn<-brm(y~1+presses,noreading_data,
prior = priors_log,

iter = 2000, chains = 4,family = lognormal(),
control = list(adapt_delta = 0.99,

max_treedepth=15))

## Compiling the C++ model
## Start sampling
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Example 2: Investigating adaptation effects

Summarizing the posterior and inference
Next, we turn to the question of what we can report as our results, and
what we can conclude from the data.

We can summarize the posterior and do inference as discussed in
Example 1.
If we want to talk about the effect estimated by the model, we
summarize the posterior of β in the following way:
β̂ = 0.079, 95% CrI = [0.062, 0.096], P(β > 0) ≈ 1
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Example 2: Investigating adaptation effects
Posterior predictive checks and distribution of summary statistics
We can now verify whether our predicted datasets look more similar to the
real dataset. See Figure 10.
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Figure 10: Posterior predictive check.
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Example 2: Investigating adaptation effects

Posterior predictive checks and distribution of summary statistics

m2_logn<-brm(y~1+presses,noreading_data,
prior = priors_log,

iter = 2000, chains = 4,
family = lognormal(),
control = list(adapt_delta = 0.99,

max_treedepth=15))
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General workflow
This is the general workflow that we suggest for a Bayesian model.

1 Define the full probability model:
a. Decide on the likelihood.
b. Decide on the priors.
c. Write the brms or Stan model.

2 Do prior predictive checks to determine if priors make sense.
3 Check model using fake data simulations:

a. Simulate data with known values for the parameters.
b. Fit the model and do MCMC diagnostics.
c. Verify that it recovers the parameters from simulated data.

4 Fit the model with real data and do MCMC diagnostics.
5 Evaluate the model’s fit (e.g., posterior predictive checks, distribution

of summary statistics). This may send you back to 1.
6 Inference/prediction/decisions.
7 Conduct model comparison if there’s an alternative model (to be

discussed later).
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