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Introduction

Bayes’ rule can be written with reference to a specific statistical model M1.
D refers to the data. θ is the parameter, or vector of parameters.

P(θ | D,M1) = P(D | θ,M1)P(θ | M1)
P(D | M1) (1)
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Introduction

P(D | M1) is the likelihood, and is a single number that tells you the
likelihood of the observed data D given the model M1 (and only in the
discrete case, it tells you the probability of the observed data D given the
model).
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Introduction

Obviously, you would prefer a model that gives a higher likelihood. For
example, and speaking informally, if you have data that were generated
from a Normal(0,1) distribution, then the likelihood of the data given that
µ = 0 will be higher than the likelihood given some other value like µ = 10.
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Introduction

The higher likelihood is telling us that the underlying model is more likely to
have produced the data. So we would prefer the model with the higher
likelihood: we would prefer Normal(0,1) over Normal(10,1) as the presumed
distribution that generated the data.
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Introduction
Assume for simplicity that σ = 1.
## sample 100 iid data points:
x<-rnorm(100)
## compute log likelihood under mu=0
(loglikmu0<-sum(dnorm(x,mean=0,sd=1,log=TRUE)))

## [1] -154.63

## compute log likelihood under mu=10
(loglikmu10<-sum(dnorm(x,mean=10,sd=1,log=TRUE)))

## [1] -5018

## the likelihood ratio is a difference of logliks
## on the log scale:
loglikmu0-loglikmu10

## [1] 4863.4
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Introduction

One way to compare two models M1 and M2 is to use the Bayes factor:

BF12 = P(D | M1)
P(D | M2) (2)

The Bayes factor is similar to the frequentist likelihood ratio test (or
ANOVA), with the difference that in the Bayes factor, the likelihood is
integrated over the parameter space, not maximized (shown below).
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Introduction

How to compute the likelihood? Consider the simple binomial case where we
have a subject answer 10 questions, and they get 9 right. That’s our data.
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Introduction

Discrete example
Assuming a binomial likelihood function, Binomial(n, θ), the two models we
will compare are

M1, the parameter has a point value θ = 0.5 with probability 1 (a very
sharp prior), and
M2, the parameter has a vague prior θ ∼ Beta(1, 1). Recall that this
Beta(1, 1) distribution is Uniform(0, 1).
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Introduction

Discrete example
The likelihood under M1 is:(

n
k

)
θ9(1− θ)1 =

(
10
9

)
0.510 (3)

We already know how to compute this:
(probDataM1<-dbinom(9,p=0.5,size=10))

## [1] 0.0097656
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Introduction

Discrete example
The marginal likelihood under M2 involves solving the following integral:

P(D | M2) =
ˆ

P(D | θ,M2)P(θ | M2) dθ (4)

The integral is simply integrating out (“summing over”) all possible values
of the parameter θ.
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Introduction

Discrete example
To see what summing over all possible values means, first consider a
discrete version of this:
suppose we say that our θ can take on only these three values:
θ1 = 0, θ2 = 0.5, θ3 = 1, and each has probability 1/3. Then, the marginal
likelihood of the data given this prior specification of θ would be:

P(D | M) =P(θ1)P(D | θ1) + P(θ2)P(D | θ2) + P(θ3)P(D | θ3)
=
∑

P(D | θi ,M)P(θi | M)
(5)
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Introduction
Discrete example
In our discrete example, this evaluates to:
res<-(1/3)* (choose(10,9)* (0)^9 * (1-0)^1) + (1/3)*

(choose(10,9)* (0.5)^9 * (1-0.5)^1) +
(1/3)* (choose(10,9)* (1)^9 * (1-1)^1)

res

## [1] 0.0032552
This may be easier to read in mathematical form:

P(D | M) =P(θ1)P(D | θ1) + P(θ2)P(D | θ2) + P(θ3)P(D | θ3)

=1
3

((
10
9

)
09(1− 0)1

)
+ 1

3

((
10
9

)
0.59(1− 0.5)1

)

+1
3

((
10
9

)
19(1− 1)1

)
=0.003

(6)
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Introduction

Discrete example
Essentially, we are computing the marginal likelihood P(D | M) by
averaging the likelihood across possible parameter values (here, only three
possible values), with the prior probabilities for each parameter value serving
as a weight.
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Introduction

Discrete example
The Bayes factor for Model 1 vs Model 2 would then be
0.0097/0.003

## [1] 3.2333
Model 1, which assumes that θ has a point value 0.5, is approximately three
times more likely than the Model 2 with the discrete prior over θ
(θ1 = 0, θ2 = 0.5, θ3 = 1, each with probability 1/3).
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Introduction

Continuous example
The integral shown above does essentially the calculation we show above,
but summing over the entire continuous space that is the range of possible
values of θ:

P(D | M2) =
ˆ

P(D | θ,M2)P(θ | M2) dθ (7)
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Introduction

Continuous example
Let’s solve this integral analytically. We need to know only one small detail
from integral calculus:

ˆ b

a
x9 dx = [x

10

10 ]ba (8)

Similarly:
ˆ b

a
x10 dx = [x

11

11 ]ba (9)

Having reminded ourselves of how to solve this simple integral, we proceed
as follows.
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Introduction

Continuous example
Our prior for θ is Beta(α = 1, β = 1):

P(θ | M2) = Γ(α + β)
Γ(α)Γ(β)θ

α−1θβ−1

= Γ(2)
Γ(1)Γ(1)θ

1−1θ1−1

=1

(10)
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Introduction
Continuous example
So, our integral simplifies to:

P(D | M2) =
ˆ 1

0
P(D | θ,M2) dθ

=
ˆ 1

0

(
10
9

)
θ9(1− θ)1 dθ

=
ˆ 1

0

(
10
9

)
(θ9 − θ10) dθ

=10
[
θ10

10 −
θ11

11

]1

0

=10× 1
110 = 1

11

(11)
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Introduction

Continuous example
So, when Model 1 assumes that the θ parameter is 0.5, and Model 2 has a
vague prior Beta(1, 1) on the θ parameter, our Bayes factor will be:

BF12 = P(D | M1)
P(D | M2) = 0.00977

1/11 = 0.107 (12)
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Introduction

Continuous example
Thus, the model with the vague prior (M2) is about 9 times more likely
than the model with θ = 0.5:

1
0.10742 = 9.309 (13)
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Introduction

Continuous example
We could conclude that we have some evidence against the guessing model
M1 in this case. Jeffreys (n.d.) has suggested the following decision criterion
using Bayes factors. Here, we are comparing two models, labeled 1 and 2.

BF12 > 100: Decisive evidence
BF12 = 32− 100: Very strong
BF12 = 10− 32: Strong
BF12 = 3− 10: Substantial
BF12 = 2− 3: Not worth more than a bare mention
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Introduction

Prior sensitivity
The Bayes factor is sensitive to the choice of prior. It is therefore important
to do a sensitivity analysis with different priors.
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Introduction
Prior sensitivity
For the model M2 above, consider the case where we have a prior on θ such
that there are 10 possible values for θ, 0.1, 0.2, 0.3,. . . ,1, and the
probabilities of each value of θ are 1/10.
theta<-seq(0.1,1,by=0.1)
w<-rep(1/10,10)

prob<-rep(NA,length(w))
for(i in 1:length(theta)){
prob[i]<-(1/w[i])*choose(10,9)*theta[i]^9*(1-theta[i]^1)
}
## Likelihood for model M2 with
## new prior on theta:
sum(prob)

## [1] 8.2871

Shravan Vasishth 05 Model comparison and hypothesis testing September 03, 2019 24 / 64



Introduction

Prior sensitivity
Now the Bayes factor for M1 compared to M2 is:
0.0097/sum(prob)

## [1] 0.0011705
Now, model M2 is decisively more likely compared to model M1:
1/(0.0097/sum(prob))

## [1] 854.34
This toy example illustrates the effect of prior specification on the Bayes
factor. It is therefore very important to display the Bayes factor under both
uninformative and informative priors for the parameter that we are
interested in.
One should never use a single ‘default’ prior and report a single
Bayes factor.
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Introduction

The Bayes factor is the ratio of posterior to prior odds
The Bayes factor is really the ratio of posterior odds vs prior odds for any
given pair of models:
BF = posterior odds

prior odds
In the context of our problem:

P(M1 | D)
P(M2 | D)

↑
posterior odds

= P(D | M1)
P(D | M2)

↑
BF12

P(M1)
P(M2)

↑
prior odds

(14)
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Introduction

The Bayes factor is the ratio of posterior to prior odds
So, when the prior odds for M1 vs M2 are 1 (i.e., when both models are a
priori equi-probable), then we are just interested in computing the posterior
odds for the two models.
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The Savage-Dickey method

This method consists of computing the Bayes factor by dividing the height
of the posterior for the parameter of interest, θ, by the height of the prior
for θ at the specific point corresponding to some null hypothesis value
θ = θ0. Because we call the baseline model the null model, we label it M0.
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The Savage-Dickey method

The Savage-Dickey method is based on a theorem whose proof appears in
several published works (Verdinelli and Wasserman 1995).
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Savage-Dickey Density ratio

Suppose that M1 is a model with parameters θ = (φ, ω), and M0 is a model
that is a restricted version of M1 with ω = ω0 and free parameter φ.
Suppose that the priors in the two models satisfy

f (φ | M0) = f (φ | ω = ω0,M1) (15)

[The above holds if φ and ω are independent under M1, that is, if
f (φ, ω | M1) = f (φ | M1)f (ω | M1).]
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Savage-Dickey Density ratio

Then, Bayes factor of M0 can be written as

BF01 = P(D|H0)
P(D|H1) = f (ω = ω0 | D,M1)

f (ω = ω0 | M1) (16)
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Savage-Dickey Density ratio

Computing Bayes Factors using the Savage-Dickey method
This example is taken from Lee and Wagenmakers (2013). Suppose we
have within-subjects data for two conditions.
The data represent increase in recall performance in a memory task
from the same subject, once in winter and once in summer.
Suppose one theory says that increase in recall performance is higher in
summer, but an alternative theory claims that there is no difference
between the two seasons.
We will test the null vs alternative hypotheses using Bayes factors.
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Savage-Dickey Density ratio

Computing Bayes Factors using the Savage-Dickey method
# Read data:
Winter <- c(-0.05,0.41,0.17,-0.13,0.00,-0.05,0.00,0.17,0.29,0.04,0.21,0.08,0.37,

0.17,0.08,-0.04,-0.04,0.04,-0.13,-0.12,0.04,0.21,0.17,0.17,0.17,
0.33,0.04,0.04,0.04,0.00,0.21,0.13,0.25,-0.05,0.29,0.42,-0.05,0.12,
0.04,0.25,0.12)

Summer <- c(0.00,0.38,-0.12,0.12,0.25,0.12,0.13,0.37,0.00,0.50,0.00,0.00,-0.13,
-0.37,-0.25,-0.12,0.50,0.25,0.13,0.25,0.25,0.38,0.25,0.12,0.00,0.00,
0.00,0.00,0.25,0.13,-0.25,-0.38,-0.13,-0.25,0.00,0.00,-0.12,0.25,
0.00,0.50,0.00)
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Savage-Dickey Density ratio

Computing Bayes Factors using the Savage-Dickey method
Let’s say we want to compare the evidence for two hypotheses: the
difference between the two conditions (Winter and Summer) is
H0 : δ = 0 and H0 : δ 6= 0.
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Savage-Dickey Density ratio

Computing Bayes Factors using the Savage-Dickey method
Normally, we would do a paired t-test. We get a non-significant result:
##
## Paired t-test
##
## data: Winter and Summer
## t = 0.786, df = 40, p-value = 0.44
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.053647 0.121940
## sample estimates:
## mean of the differences
## 0.034146
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Savage-Dickey Density ratio

Computing Bayes Factors using the Savage-Dickey method
Equivalently, one can do a one sample test after taking the pairwise
differences in scores:
##
## One Sample t-test
##
## data: d
## t = 0.786, df = 40, p-value = 0.44
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -0.053647 0.121940
## sample estimates:
## mean of x
## 0.034146
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Savage-Dickey Density ratio

Computing Bayes Factors using the Savage-Dickey method
We will now compute the Bayes factor, using the Savage-Dickey method.
This will allow us to test the null against the alternative hypothesis.
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Savage-Dickey Density ratio: Example 1

Prepare data:
#standardize the paired difference of scores
d <- d / sd(d)
#number of subjects
ndata <- length(d)
# to be passed on to Stan
data <- list(x=d, ndata=ndata)
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Savage-Dickey Density ratio: Example 1

We will now compute, using Stan, the Bayes Factor for the two hypotheses
H0 : δ = 0 and H1 : δ 6= 0.

The model is:

δ ∼ Cauchy(0, 1)
σ ∼ Cauchy(0, 1)I(0,∞)
µ← δσ
xi ∼ Normal(µ, σ2)
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Savage-Dickey Density ratio: Example 1

(see accompanying R code with these slides)
model_example1 <- "
data {

int<lower=0> ndata;
vector[ndata] x;

}
parameters {

real<lower=0> sigma;
real delta;

}
transformed parameters {

real mu;
mu = delta * sigma;

}
model {

sigma ~ cauchy(0, 1);
delta ~ cauchy(0, 1);
x ~ normal(mu, sigma);

}"
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Savage-Dickey Density ratio: Example 1

# Parameters to be monitored
parameters <- c("delta")

samples <- stan(model_code=model_example1,
data=data,
iter=20000,
chains=4,
control=list(adapt_delta=0.99,

max_treedepth=15))

# Collect posterior samples across all chains:
delta.posterior <- extract(samples,pars=parameters)$delta

Shravan Vasishth 05 Model comparison and hypothesis testing September 03, 2019 41 / 64



Savage-Dickey Density ratio: Example 1

hist(delta.posterior,freq=FALSE,xlim=c(-3,3))
x<-seq(-3,3,by=0.01)
lines(x,dcauchy(x))

Histogram of delta.posterior

delta.posterior

D
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−3 −2 −1 0 1 2 3

0.
0

1.
0

2.
0
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Savage-Dickey Density ratio: Example 1

#BFs based on logspline fit
library(polspline)
fit.posterior <- logspline(delta.posterior)

# 95% confidence interval:
x0 <- qlogspline(0.025,fit.posterior)
x1 <- qlogspline(0.975,fit.posterior)

# this gives the pdf at point delta = 0
posterior <- dlogspline(0, fit.posterior)
# height of order-restricted prior at delta = 0
prior <- dcauchy(0)
(BF01 <- posterior/prior)

## [1] 6.094
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Savage-Dickey Density ratio: Example 1

The odds of H0 being true compared to H1 are 6 : 1.
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Figure 1: Shown are the prior and posterior densities on delta. The null
hypothesis was that delta is 0, and we see that delta=0 has a value 6 times larger
under the posterior compared to the prior. This means that the evidence for
the null hypothesis that delta=0 is 6 times more than the alternative.
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Savage-Dickey Density ratio: Example 2

We will now compute, using Stan, the Bayes Factor for the two hypotheses
H0 : δ = 0 and H1 : δ ∼ Cauchy(0, 1)I(−∞,0).

The Bayesian model is:

δ ∼ Cauchy(0, 1)I(−∞,0)
σ ∼ Cauchy(0, 1)I(0,∞)
µ← δσ
xi ∼ Normal(µ, σ)

## You could define initial values, but we
## will let Stan do this:
#myinits <- list(
# list(delta=-abs(rnorm(1,0,1)), deltaprior=-abs(rnorm(1,0,1)), sigmatmp=.1),
# list(delta=-abs(rnorm(1,0,1)), deltaprior=-abs(rnorm(1,0,1)), sigmatmp=.2),
# list(delta=-abs(rnorm(1,0,1)), deltaprior=-abs(rnorm(1,0,1)), sigmatmp=.3))
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Savage-Dickey Density ratio: Example 2

# Parameters to be monitored
parameters <- c("delta")

model_example2 <- "
// One-Sample Comparison of Means
data {

int<lower=0> ndata;
vector[ndata] x;

}
parameters {

real<lower=0> sigma;
real<upper=0> delta;

}
transformed parameters {

real mu;
mu = delta * sigma;

}
model {

// delta and sigma Come From (Half) Cauchy Distributions
sigma ~ cauchy(0, 1);
delta ~ cauchy(0, 1);
// Data
x ~ normal(mu, sigma);

}"
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Savage-Dickey Density ratio: Example 2

## samples from model:
samples <- stan(model_code=model_example2,

data=data,
#init=myinits,
pars=parameters,
iter=30000,
chains=4,
control = list(adapt_delta = 0.99,

max_treedepth=15))

# Collect posterior samples across all chains:
delta.posterior <- extract(samples)$delta
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Savage-Dickey Density ratio: Example 2
Posterior distribution 

 and prior (line)

delta.posterior
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Savage-Dickey Density ratio: Example 2

Now we compute the Bayes Factor, comparing the two hypotheses.
fit.posterior <- logspline(delta.posterior,ubound=0)
# 95% confidence interval:
x0 <- qlogspline(0.025,fit.posterior)
x1 <- qlogspline(0.975,fit.posterior)

# this gives the pdf at point delta = 0
posterior <- dlogspline(0, fit.posterior)
# height of order--restricted prior at delta = 0
prior <- 2*dcauchy(0)
(BF01 <- posterior/prior)

## [1] 14.071
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Savage-Dickey Density ratio: Example 2

According to this analysis, the null hypothesis H0 : δ = 0 being true is 14
times more likely than H1 : δ ∼ Cauchy(0, 1)I(−∞,0).
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Figure 2: The prior and posterior densities.
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Two methods for computing Bayes factors with brms

brms provides two approaches:

hypothesis function
bayes_factor
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Two methods for computing Bayes factors with brms

Set up data
First, set up data as a data-frame:
y<-c(Winter,Summer)
#length(Winter)
n<-length(Summer)

cond<-factor(c(rep("winter",n),
rep("summer",n)))

subject<-rep(rep(1:n),2)
dat<-data.frame(y,cond,subject)
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Two methods for computing Bayes factors with brms

Examine data frame
## y cond subject
## 1 -0.05 winter 1
## 2 0.41 winter 2
## 3 0.17 winter 3
## 4 -0.13 winter 4
## 5 0.00 winter 5
## 6 -0.05 winter 6
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Two methods for computing Bayes factors with brms
Set priors:
## null hypothesis model's prior:
priors0 <- c(set_prior("cauchy(0, 1)", class = "Intercept"),

set_prior("cauchy(0, 1)",
class = "sd"),

set_prior("cauchy(0, 1)",
class = "sigma"))

## alt hypothesis model's prior:
priors <- c(set_prior("cauchy(0, 1)", class = "Intercept"),

set_prior("cauchy(0, 1)",
class = "b"),

set_prior("cauchy(0, 1)",
class = "sd"),

set_prior("cauchy(0, 1)",
class = "sigma"))
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Two methods for computing Bayes factors with brms

Using Savage-Dickey method (the hypothesis function in brms)
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Two methods for computing Bayes factors with brms

Using Savage-Dickey method (the hypothesis function in brms)
# H0: No effect of cond
BF_brms_m <- brms::hypothesis(m_full,

"condwinter = 0")
## Evidence for NULL model vs FULL model:
BF_brms_m$hypothesis$Evid.Ratio

## [1] 4.6741
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Two methods for computing Bayes factors with brms
Sensitivity analysis (use standard normal priors instead of Cauchy)

## Normal prior for alternative (for sensitivity analysis)
normalpriors <- c(set_prior("normal(0, 1)", class = "Intercept"),

set_prior("normal(0, 1)",
class = "b"),

set_prior("normal(0, 1)",
class = "sd"),

set_prior("normal(0, 1)",
class = "sigma"))

m_full <- brm(y ~ cond + (1|subject),
data = dat,
prior = normalpriors,
sample_prior = TRUE,
iter = 10000,

control=list(adapt_delta=0.99))

#summary(m_full)Shravan Vasishth 05 Model comparison and hypothesis testing September 03, 2019 57 / 64



Two methods for computing Bayes factors with brms

# H0: No effect of cond
BF_brms_m <- brms::hypothesis(m_full,

"condwinter = 0")
## Evidence for NULL model vs FULL model:
BF_brms_m$hypothesis$Evid.Ratio

## [1] 4.6741
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Two methods for computing Bayes factors with brms
Using the bayes_factor function in brms
## null model
m0<-brm(y~1+(1|subject),

dat,prior=priors0,
warmup=1000,
iter=10000,
save_all_pars = TRUE,
control=list(adapt_delta=0.99))

SAMPLING FOR MODEL ‘b8a191be61e1195fb8f97f12139f0ba4’ NOW
(CHAIN 1). Chain 1: Chain 1: Gradient evaluation took 2.9e-05 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition would take
0.29 seconds. Chain 1: Adjust your expectations accordingly! Chain 1:
Chain 1: Chain 1: Iteration: 1 / 10000 [ 0%] (Warmup) Chain 1: Iteration:
1000 / 10000 [ 10%] (Warmup) Chain 1: Iteration: 1001 / 10000 [ 10%]
(Sampling) Chain 1: Iteration: 2000 / 10000 [ 20%] (Sampling) Chain 1:
Iteration: 3000 / 10000 [ 30%] (Sampling) Chain 1: Iteration: 4000 /
10000 [ 40%] (Sampling) Chain 1: Iteration: 5000 / 10000 [ 50%]
(Sampling) Chain 1: Iteration: 6000 / 10000 [ 60%] (Sampling) Chain 1:
Iteration: 7000 / 10000 [ 70%] (Sampling) Chain 1: Iteration: 8000 /
10000 [ 80%] (Sampling) Chain 1: Iteration: 9000 / 10000 [ 90%]
(Sampling) Chain 1: Iteration: 10000 / 10000 [100%] (Sampling) Chain 1:
Chain 1: Elapsed Time: 0.508136 seconds (Warm-up) Chain 1: 2.29793
seconds (Sampling) Chain 1: 2.80607 seconds (Total) Chain 1:
SAMPLING FOR MODEL ‘b8a191be61e1195fb8f97f12139f0ba4’ NOW
(CHAIN 2). Chain 2: Chain 2: Gradient evaluation took 1e-05 seconds
Chain 2: 1000 transitions using 10 leapfrog steps per transition would take
0.1 seconds. Chain 2: Adjust your expectations accordingly! Chain 2: Chain
2: Chain 2: Iteration: 1 / 10000 [ 0%] (Warmup) Chain 2: Iteration: 1000
/ 10000 [ 10%] (Warmup) Chain 2: Iteration: 1001 / 10000 [ 10%]
(Sampling) Chain 2: Iteration: 2000 / 10000 [ 20%] (Sampling) Chain 2:
Iteration: 3000 / 10000 [ 30%] (Sampling) Chain 2: Iteration: 4000 /
10000 [ 40%] (Sampling) Chain 2: Iteration: 5000 / 10000 [ 50%]
(Sampling) Chain 2: Iteration: 6000 / 10000 [ 60%] (Sampling) Chain 2:
Iteration: 7000 / 10000 [ 70%] (Sampling) Chain 2: Iteration: 8000 /
10000 [ 80%] (Sampling) Chain 2: Iteration: 9000 / 10000 [ 90%]
(Sampling) Chain 2: Iteration: 10000 / 10000 [100%] (Sampling) Chain 2:
Chain 2: Elapsed Time: 0.575127 seconds (Warm-up) Chain 2: 2.30932
seconds (Sampling) Chain 2: 2.88445 seconds (Total) Chain 2:
SAMPLING FOR MODEL ‘b8a191be61e1195fb8f97f12139f0ba4’ NOW
(CHAIN 3). Chain 3: Chain 3: Gradient evaluation took 1e-05 seconds
Chain 3: 1000 transitions using 10 leapfrog steps per transition would take
0.1 seconds. Chain 3: Adjust your expectations accordingly! Chain 3: Chain
3: Chain 3: Iteration: 1 / 10000 [ 0%] (Warmup) Chain 3: Iteration: 1000
/ 10000 [ 10%] (Warmup) Chain 3: Iteration: 1001 / 10000 [ 10%]
(Sampling) Chain 3: Iteration: 2000 / 10000 [ 20%] (Sampling) Chain 3:
Iteration: 3000 / 10000 [ 30%] (Sampling) Chain 3: Iteration: 4000 /
10000 [ 40%] (Sampling) Chain 3: Iteration: 5000 / 10000 [ 50%]
(Sampling) Chain 3: Iteration: 6000 / 10000 [ 60%] (Sampling) Chain 3:
Iteration: 7000 / 10000 [ 70%] (Sampling) Chain 3: Iteration: 8000 /
10000 [ 80%] (Sampling) Chain 3: Iteration: 9000 / 10000 [ 90%]
(Sampling) Chain 3: Iteration: 10000 / 10000 [100%] (Sampling) Chain 3:
Chain 3: Elapsed Time: 0.539796 seconds (Warm-up) Chain 3: 2.33466
seconds (Sampling) Chain 3: 2.87446 seconds (Total) Chain 3:
SAMPLING FOR MODEL ‘b8a191be61e1195fb8f97f12139f0ba4’ NOW
(CHAIN 4). Chain 4: Chain 4: Gradient evaluation took 1.2e-05 seconds
Chain 4: 1000 transitions using 10 leapfrog steps per transition would take
0.12 seconds. Chain 4: Adjust your expectations accordingly! Chain 4:
Chain 4: Chain 4: Iteration: 1 / 10000 [ 0%] (Warmup) Chain 4: Iteration:
1000 / 10000 [ 10%] (Warmup) Chain 4: Iteration: 1001 / 10000 [ 10%]
(Sampling) Chain 4: Iteration: 2000 / 10000 [ 20%] (Sampling) Chain 4:
Iteration: 3000 / 10000 [ 30%] (Sampling) Chain 4: Iteration: 4000 /
10000 [ 40%] (Sampling) Chain 4: Iteration: 5000 / 10000 [ 50%]
(Sampling) Chain 4: Iteration: 6000 / 10000 [ 60%] (Sampling) Chain 4:
Iteration: 7000 / 10000 [ 70%] (Sampling) Chain 4: Iteration: 8000 /
10000 [ 80%] (Sampling) Chain 4: Iteration: 9000 / 10000 [ 90%]
(Sampling) Chain 4: Iteration: 10000 / 10000 [100%] (Sampling) Chain 4:
Chain 4: Elapsed Time: 0.567069 seconds (Warm-up) Chain 4: 2.45559
seconds (Sampling) Chain 4: 3.02266 seconds (Total) Chain 4:
## alt model
m1<-brm(y~cond+(1|subject),

dat,prior=priors,
warmup=1000,
save_all_pars = TRUE,
iter=10000,
control=list(adapt_delta=0.99))

SAMPLING FOR MODEL ‘bb63753e0506715d071f48dd4d6da3c8’ NOW
(CHAIN 1). Chain 1: Chain 1: Gradient evaluation took 3.7e-05 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition would take
0.37 seconds. Chain 1: Adjust your expectations accordingly! Chain 1:
Chain 1: Chain 1: Iteration: 1 / 10000 [ 0%] (Warmup) Chain 1: Iteration:
1000 / 10000 [ 10%] (Warmup) Chain 1: Iteration: 1001 / 10000 [ 10%]
(Sampling) Chain 1: Iteration: 2000 / 10000 [ 20%] (Sampling) Chain 1:
Iteration: 3000 / 10000 [ 30%] (Sampling) Chain 1: Iteration: 4000 /
10000 [ 40%] (Sampling) Chain 1: Iteration: 5000 / 10000 [ 50%]
(Sampling) Chain 1: Iteration: 6000 / 10000 [ 60%] (Sampling) Chain 1:
Iteration: 7000 / 10000 [ 70%] (Sampling) Chain 1: Iteration: 8000 /
10000 [ 80%] (Sampling) Chain 1: Iteration: 9000 / 10000 [ 90%]
(Sampling) Chain 1: Iteration: 10000 / 10000 [100%] (Sampling) Chain 1:
Chain 1: Elapsed Time: 0.875484 seconds (Warm-up) Chain 1: 3.61519
seconds (Sampling) Chain 1: 4.49067 seconds (Total) Chain 1:
SAMPLING FOR MODEL ‘bb63753e0506715d071f48dd4d6da3c8’ NOW
(CHAIN 2). Chain 2: Chain 2: Gradient evaluation took 1.4e-05 seconds
Chain 2: 1000 transitions using 10 leapfrog steps per transition would take
0.14 seconds. Chain 2: Adjust your expectations accordingly! Chain 2:
Chain 2: Chain 2: Iteration: 1 / 10000 [ 0%] (Warmup) Chain 2: Iteration:
1000 / 10000 [ 10%] (Warmup) Chain 2: Iteration: 1001 / 10000 [ 10%]
(Sampling) Chain 2: Iteration: 2000 / 10000 [ 20%] (Sampling) Chain 2:
Iteration: 3000 / 10000 [ 30%] (Sampling) Chain 2: Iteration: 4000 /
10000 [ 40%] (Sampling) Chain 2: Iteration: 5000 / 10000 [ 50%]
(Sampling) Chain 2: Iteration: 6000 / 10000 [ 60%] (Sampling) Chain 2:
Iteration: 7000 / 10000 [ 70%] (Sampling) Chain 2: Iteration: 8000 /
10000 [ 80%] (Sampling) Chain 2: Iteration: 9000 / 10000 [ 90%]
(Sampling) Chain 2: Iteration: 10000 / 10000 [100%] (Sampling) Chain 2:
Chain 2: Elapsed Time: 0.803961 seconds (Warm-up) Chain 2: 5.62105
seconds (Sampling) Chain 2: 6.42501 seconds (Total) Chain 2:
SAMPLING FOR MODEL ‘bb63753e0506715d071f48dd4d6da3c8’ NOW
(CHAIN 3). Chain 3: Chain 3: Gradient evaluation took 1.7e-05 seconds
Chain 3: 1000 transitions using 10 leapfrog steps per transition would take
0.17 seconds. Chain 3: Adjust your expectations accordingly! Chain 3:
Chain 3: Chain 3: Iteration: 1 / 10000 [ 0%] (Warmup) Chain 3: Iteration:
1000 / 10000 [ 10%] (Warmup) Chain 3: Iteration: 1001 / 10000 [ 10%]
(Sampling) Chain 3: Iteration: 2000 / 10000 [ 20%] (Sampling) Chain 3:
Iteration: 3000 / 10000 [ 30%] (Sampling) Chain 3: Iteration: 4000 /
10000 [ 40%] (Sampling) Chain 3: Iteration: 5000 / 10000 [ 50%]
(Sampling) Chain 3: Iteration: 6000 / 10000 [ 60%] (Sampling) Chain 3:
Iteration: 7000 / 10000 [ 70%] (Sampling) Chain 3: Iteration: 8000 /
10000 [ 80%] (Sampling) Chain 3: Iteration: 9000 / 10000 [ 90%]
(Sampling) Chain 3: Iteration: 10000 / 10000 [100%] (Sampling) Chain 3:
Chain 3: Elapsed Time: 0.807385 seconds (Warm-up) Chain 3: 3.13946
seconds (Sampling) Chain 3: 3.94684 seconds (Total) Chain 3:
SAMPLING FOR MODEL ‘bb63753e0506715d071f48dd4d6da3c8’ NOW
(CHAIN 4). Chain 4: Chain 4: Gradient evaluation took 1.8e-05 seconds
Chain 4: 1000 transitions using 10 leapfrog steps per transition would take
0.18 seconds. Chain 4: Adjust your expectations accordingly! Chain 4:
Chain 4: Chain 4: Iteration: 1 / 10000 [ 0%] (Warmup) Chain 4: Iteration:
1000 / 10000 [ 10%] (Warmup) Chain 4: Iteration: 1001 / 10000 [ 10%]
(Sampling) Chain 4: Iteration: 2000 / 10000 [ 20%] (Sampling) Chain 4:
Iteration: 3000 / 10000 [ 30%] (Sampling) Chain 4: Iteration: 4000 /
10000 [ 40%] (Sampling) Chain 4: Iteration: 5000 / 10000 [ 50%]
(Sampling) Chain 4: Iteration: 6000 / 10000 [ 60%] (Sampling) Chain 4:
Iteration: 7000 / 10000 [ 70%] (Sampling) Chain 4: Iteration: 8000 /
10000 [ 80%] (Sampling) Chain 4: Iteration: 9000 / 10000 [ 90%]
(Sampling) Chain 4: Iteration: 10000 / 10000 [100%] (Sampling) Chain 4:
Chain 4: Elapsed Time: 0.776619 seconds (Warm-up) Chain 4: 3.16295
seconds (Sampling) Chain 4: 3.93957 seconds (Total) Chain 4:
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Two methods for computing Bayes factors with brms

Using the bayes_factor function in brms

bayes_factor(m0,m1)$bf

Iteration: 1 Iteration: 2 Iteration: 3 Iteration: 4 Iteration: 5 Iteration: 1
Iteration: 2 Iteration: 3 Iteration: 4 [1] 21.916
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Two methods for computing Bayes factors with brms

Using the bayes_factor function in brms
Notice that if you flip the order of the models in the function, the evidence
is for the first model:
bayes_factor(m1,m0)$bf

Iteration: 1 Iteration: 2 Iteration: 3 Iteration: 4 Iteration: 5 Iteration: 1
Iteration: 2 Iteration: 3 Iteration: 4 [1] 0.046163
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Class Exercise 1

Refit examples 1 and 2 with a different prior for σ than the ones used. Does
the Bayes Factor change when the priors are changed? In the two examples,
how does the Bayes factor change when the prior for δ is changed to a
Normal(0,0.5)?
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Class Exercise 2

Estimate the Bayes factor for the hypotheses: H0 : δ = 0, and
H1 : δ ∼ Cauchy(0, 1)I(0,∞).
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