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Lecture 2

The sampling distribution of the mean

Sampling from the normal distribution

The sampling distribution of the mean

When we have a single sample, we know how to compute MLEs
of the sample mean and standard deviation, µ̂ and σ̂.
Suppose now that you had many repeated samples; from each
sample, you can compute the mean each time. We can simulate
this situation:

x<-rnorm(100,mean=500,sd=50)

mean(x)

## [1] 502.92

x<-rnorm(100,mean=500,sd=50)

mean(x)

## [1] 497.16
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Lecture 2

The sampling distribution of the mean

Sampling from the normal distribution

The sampling distribution of the mean

Let’s repeatedly simulate sampling 1000 times:

nsim<-1000

n<-100

mu<-500

sigma<-100

samp_distrn_means<-rep(NA,nsim)

samp_distrn_sd<-rep(NA,nsim)

for(i in 1:nsim){
x<-rnorm(n,mean=mu,sd=sigma)

samp_distrn_means[i]<-mean(x)

samp_distrn_sd[i]<-sd(x)

}
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Lecture 2

The sampling distribution of the mean

Sampling from the normal distribution

The sampling distribution of the mean

Plot the distribution of the means under repeated sampling:
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Lecture 2

The sampling distribution of the mean

Sampling from the exponential distribution

The sampling distribution of the mean

Interestingly, it is not necessary that the distribution that we are
sampling from be the normal distribution.

for(i in 1:nsim){
x<-rexp(n)

samp_distrn_means[i]<-mean(x)

samp_distrn_sd[i]<-sd(x)

}
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Lecture 2

The sampling distribution of the mean

Sampling from the exponential distribution

The sampling distribution of the mean
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Lecture 2

The sampling distribution of the mean

The central limit theorem

The central limit theorem

1. For large enough sample sizes, the sampling distribution of the
means will be approximately normal, regardless of the
underlying distribution (as long as this distribution has a mean
and variance defined for it).

2. This will be the basis for statistical inference.
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Lecture 2

The sampling distribution of the mean

Standard error

The sampling distribution of the mean

We can compute the standard deviation of the sampling
distribution of means:

## estimate from simulation:

sd(samp_distrn_means)

## [1] 0.10191
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Lecture 2

The sampling distribution of the mean

Standard error

The sampling distribution of the mean

A further interesting fact is that we can compute this standard
deviation of the sampling distribution from a single sample of
size n:
σ̂√
n

x<-rnorm(100,mean=500,sd=100)

hat_sigma<-sd(x)

hat_sigma/sqrt(n)

## [1] 9.9872
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Lecture 2

The sampling distribution of the mean

Standard error

The sampling distribution of the mean

1. So, from a sample of size n, and sd σ or an MLE σ̂, we can
compute
the standard deviation of the sampling distribution of the
means.

2. We will call this standard deviation the estimated standard
error.
SE = σ̂√

n

I say estimated because we are estimating SE using an an
estimate of σ.
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Lecture 2

The sampling distribution of the mean

Confidence intervals

Confidence intervals

The standard error allows us to define a so-called 95% confidence
interval:

µ̂± 2SE (1)

So, for the mean, we define a 95% confidence interval as follows:

µ̂± 2
σ̂√
n

(2)
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Lecture 2

The sampling distribution of the mean

Confidence intervals

Confidence intervals

In our example:

## lower bound:

mu-(2*hat_sigma/sqrt(n))

## [1] 480.03

## upper bound:

mu+(2*hat_sigma/sqrt(n))

## [1] 519.97
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Lecture 2

The sampling distribution of the mean

Confidence intervals

The meaning of the 95% CI

If you take repeated samples and compute the CI each time, 95%
of those CIs will contain the true population mean.

lower<-rep(NA,nsim)

upper<-rep(NA,nsim)

for(i in 1:nsim){
x<-rnorm(n,mean=mu,sd=sigma)

lower[i]<-mean(x) - 2 * sd(x)/sqrt(n)

upper[i]<-mean(x) + 2 * sd(x)/sqrt(n)

}

13 / 36



14/ 36

Lecture 2

The sampling distribution of the mean

Confidence intervals

The meaning of the 95% CI

## check how many CIs contain mu:

CIs<-ifelse(lower<mu & upper>mu,1,0)

table(CIs)

## CIs

## 0 1

## 61 939

## approx. 95% of the CIs contain true mean:

table(CIs)[2]/sum(table(CIs))

## 1

## 0.939
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Lecture 2

The sampling distribution of the mean

Confidence intervals

The meaning of the 95% CI
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Lecture 2

The sampling distribution of the mean

Confidence intervals

The meaning of the 95% CI

1. The 95% CI from a particular sample does not mean that the
probability that the true value of the mean lies inside that
particular CI.

2. Thus, the CI has a very confusing and (not very useful!)
interpretation.

3. In Bayesian statistics we use the credible interval, which has a
much more sensible interpretation.

However, for large sample sizes, the credible and confidence
intervals tend to be essentially identical.
For this reason, the CI is often treated (this is technically
incorrect!) as a way to characterize uncertainty about our estimate
of the mean.
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Lecture 2

The sampling distribution of the mean

Confidence intervals

Main points from this lecture

1. We compute maximum likelihood estimates of the mean
x̄ = µ̂ and standard deviation σ̂ to get estimates of the true
but unknown parameters.

x̄ =
∑n

i=1 xi
n

2. For a given sample, having estimated σ̂, we estimate the
standard error:
SE = σ̂/

√
n

3. This allows us to define a 95% CI about the estimated mean:
µ̂± 2× SE

From here, we move on to statistical inference and null hypothesis
significance testing (NHST).

17 / 36



18/ 36

Lecture 2

The story so far

1. We defined random variables.

2. We learnt about pdfs and cdfs, and learnt how to compute
P (X < x).

3. We learnt about Maximum Likelihood Estimation.

4. We learnt about the sampling distribution of the sample
means.

This prepares the way for null hypothesis significance testing
(NHST).
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Lecture 2

Statistical inference

Hypothesis testing

Suppose we have a random sample of size n, and the data come
from a N(µ, σ) distribution.
We can estimate sample mean x̄ = µ̂ and σ̂, which in turn allows
us to estimate the sampling distribution of the mean under
(hypothetical) repeated sampling:

N(x̄,
σ̂√
n

) (3)

19 / 36



20/ 36

Lecture 2

Statistical inference

The one-sample hypothesis test

Imagine taking an independent random sample from a random
variable X that is normally distributed, with mean 12 and standard
deviation 10, sample size 11. We estimate the mean and SE:

sample <- rnorm(11,mean=12,sd=10)

(x_bar<-mean(sample))

## [1] 5.4785

(SE<-sd(sample)/sqrt(11))

## [1] 3.0762
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Lecture 2

Statistical inference

The one-sample t-test

The one-sample test

The NHST approach is to set up a null hypothesis that µ has some
fixed value. For example:

H0 : µ = 0 (4)

This amounts to assuming that the true distribution of sample
means is (approximately*) normally distributed and centered
around 0, with the standard error estimated from the data.

* I will make this more precise in a minute.
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Lecture 2

Statistical inference

The one-sample t-test

Null hypothesis distribution
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Lecture 2

Statistical inference

The one-sample t-test

NHST

The intuitive idea is that

1. if the sample mean x̄ is near the hypothesized µ (here, 0), the
data are (possibly) “consistent with” the null hypothesis
distribution.

2. if the sample mean x̄ is far from the hypothesized µ, the data
are inconsistent with the null hypothesis distribution.

We formalize “near” and “far” by determining how many standard
errors the sample mean is from the hypothesized mean:

t× SE = x̄− µ (5)

This quantifies the distance of sample mean from µ in SE units.
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Lecture 2

Statistical inference

The one-sample t-test

NHST

So, given a sample and null hypothesis mean µ, we can compute
the quantity:

t =
x̄− µ
SE

(6)

Call this the t-value. Its relevance will just become clear.
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Lecture 2

Statistical inference

The one-sample t-test

NHST

The quantity

T =
X̄ − µ
SE

(7)

has a t-distribution, which is defined in terms of the sample size n.
We will express this as: T ∼ t(n− 1)
Note also that, for large n, T ∼ N(0, 1).
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Lecture 2

Statistical inference

The one-sample t-test

NHST

Thus, given a sample size n, and given our null hypothesis, we can
draw t-distribution corresponding to the null hypothesis
distribution.
For large n, we could even use N(0,1), although it is traditional in
psychology and linguistics to always use the t-distribution no
matter how large n is.
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Lecture 2

Statistical inference

The one-sample t-test

The t-distribution vs the normal

1. The t-distribution takes as parameter the degrees of freedom
n− 1, where n is the sample size (cf. the normal, which takes
the mean and variance/standard deviation).

2. The t-distribution has fatter tails than the normal for small n,
say n < 20, but for large n, the t-distribution and the normal
are essentially identical.
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Lecture 2

Statistical inference

The one-sample t-test

The t-distribution vs the normal
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Lecture 2

Statistical inference

The one-sample t-test

t-test: Rejection region

So, the null hypothesis testing procedure is:

1. Define the null hypothesis: for example, H0 : µ = 0.

2. Given data of size n, estimate x̄, standard deviation s,
standard error s/

√
n.

3. Compute the t-value:

t =
x̄− µ
s/
√
n

(8)

4. Reject null hypothesis if t-value is large (to be made more
precise next).
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Lecture 2

Statistical inference

The one-sample t-test

t-test

How to decide when to reject the null hypothesis? Intuitively, when
the t-value from the sample is so large that we end up far in either
tail of the distribution.
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Lecture 2

Statistical inference

The one-sample t-test

t-test
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Lecture 2

Statistical inference

The one-sample t-test

Rejection region

1. For a given sample size n, we can identify the “rejection
region” by using the qt function (see lecture 1).

2. Because the shape of the t-distribution depends on the degrees
of freedom (n-1), the critical t-value beyond which we reject
the null hypothesis will change depending on sample size.

3. For large sample sizes, say n > 50, the rejection point is
about 2.

abs(qt(0.025,df=15))

## [1] 2.1314

abs(qt(0.025,df=50))

## [1] 2.0086
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Lecture 2

Statistical inference

The one-sample t-test

t-test: Rejection region

Consider the t-value from our sample in our running example:

## null hypothesis mean:

mu<-0

(t_value<-(x_bar-mu)/SE)

## [1] 1.781

Recall that the t-value from the sample is simply telling you the
distance of the sample mean from the null hypothesis mean µ in
standard error units.

t =
x̄− µ
s/
√
n

or t
s√
n

= x̄− µ (9)
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Lecture 2

Statistical inference

The one-sample t-test

t-test: Rejection region

So, for large sample sizes, if | t |> 2 (approximately), we can reject
the null hypothesis.
For a smaller sample size n, you can compute the exact critical
t-value:

qt(0.025,df=n-1)

This is the critical t-value on the left-hand side of the
t-distribution. The corresponding value on the right-hand side is:

qt(0.975,df=n-1)

Their absolute values are of course identical (the distribution is
symmetric).
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Statistical inference

The one-sample t-test

The t-distribution vs the normal

Given the relevant degrees of freedom, one can compute the area
under the curve as for the Normal distribution:

pt(-2,df=10)

## [1] 0.036694

pt(-2,df=20)

## [1] 0.029633

pt(-2,df=50)

## [1] 0.025474

Notice that with large degrees of freedom, the area under the
curve to the left of -2 is approximately 0.025.
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Lecture 2

Statistical inference

The one-sample t-test

The t.test function

The t.test function in R delivers the t-value:

## from t-test function:

## t-value

t.test(sample)$statistic

## t

## 1.781
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