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Introduction to Bayesian Data Analysis for Cog-
nitive Science
Nicenboim, Schad, Vasishth
https://bruno.nicenboim.me/bayescogsci/

Discrete random variables

A random variable X is a function X : Ω → R
that associates to each outcome ω ∈ Ω exactly
one number X(ω) = x.
SX is all the x’s (all the possible values of X,
the support of X). I.e., x ∈ SX . We can also
sloppily write X ∈ SX .

An example of a discrete RV

An example of a discrete random variable: keep
tossing a coin again and again until you get a
Heads.

• X : ω → x

• ω: H, TH, TTH,. . . (infinite)
• X(H) = 1, X(TH) = 2, X(TTH) = 3,

. . .
• x = 1, 2, . . . ; x ∈ SX

A second example of a discrete random variable:
tossing a coin once.

• X : ω → x

• ω: H, T
• X(T ) = 0, X(H) = 1
• x = 0, 1; x ∈ SX
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Every discrete (continuous) random variable X
has associated with it a probability mass
(density) function (PMD, PDF).

• PMF is used for discrete distributions and
PDF for continuous.

• (Some books use PDF for both discrete and
continuous distributions.)

Thinking just about discrete random variables
for now:

pX : SX → [0, 1] (1)

defined by

pX(x) = Prob(X(ω) = x), x ∈ SX (2)

Example of a PMF: a random variable X repre-
senting tossing a coin once.

• In the case of a fair coin, x can be 0 or 1,
and the probability of each possible event
(each event is a subset of the set of possible
outcomes) is 0.5.

• Formally: pX(x) = Prob(X(ω) = x), x ∈
SX

• The probability mass function defines the
probability of each event: pX(0) = pX(1) =
0.5.

• The cumulative distribution function
(CDF) F (X ≤ x) gives the cumulative
probability of observing all the events X ≤
x.
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F (x = 1) = Prob(X ≤ 1)

=
1∑

x=0
pX(x)

= pX(x = 0) + pX(x = 1)
= 1

(3)

F (x = 0) = Prob(X ≤ 0)

=
0∑

x=0
pX(x)

= pX(x = 0)
= 0.5

(4)

Simulate tossing a coin ten times, with proba-
bility (which I call θ below) of heads 0.5:

extraDistr::rbern(n = 10, prob = 0.5)

## [1] 1 1 1 0 1 1 0 1 1 0

The probability mass function: Bernoulli

pX(x) = θx(1 − θ)(1−x)

where x can have values 0, 1.
What’s the probability of a tails/heads? The
d-family of functions:

extraDistr::dbern(0, prob = 0.5)

## [1] 0.5

extraDistr::dbern(1, prob = 0.5)

## [1] 0.5
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Notice that these probabilities sum to 1.
The cumulative probability distribution function:
the p-family of functions:

F (x = 1) = Prob(X ≤ 1) =
1∑

x=0
pX(x) = 1

extraDistr::pbern(1, prob = 0.5)

## [1] 1

F (x = 0) = Prob(X ≤ 0) =
0∑

x=0
pX(x) = 0.5

extraDistr::pbern(0, prob = 0.5)

## [1] 0.5

Another example: The binomial

• Consider tossing a coin 10 times (number of
trials, size in R).

• When number of trials (size) is 1, we have
a Bernoulli; when we have size greater than
1, we have a Binomial.

θx(1 − θ)1−x

where
Sx = {0, 1}

Binomial PMF

n

x

θx(1 − θ)n−x
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where
Sx = {0, 1, . . . , n}

• n is the number of times the coin was tossed
(the number of trials; size in R).

•
(n
x

)
is the number of ways that you can get

x successes in n trials.

choose(10, 2)

## [1] 45

• θ is the probability of success in n trials.
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Four critical R functions

1. Generate random data
n: number of experiments done (Note: we used
n for trials above)
size: the number of times the coin was tossed in
each experiment

rbinom(n = 10, size = 1, prob = 0.5)

## [1] 1 0 0 1 0 0 1 0 1 1

## equivalent to: rbern(10,0.5)

Compare:

rbinom(n = 10, size = 10, prob = 0.5)

## [1] 6 4 8 6 4 4 3 7 4 6

2. Compute probabilities of particular
events (0,1,. . . ,10 successes when n=10)

probs <- round(dbinom(0:10, size = 10,
prob = 0.5), 3)

x <- 0:10
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## x probs
## 1 0 0.001
## 2 1 0.010
## 3 2 0.044
## 4 3 0.117
## 5 4 0.205
## 6 5 0.246
## 7 6 0.205
## 8 7 0.117
## 9 8 0.044
## 10 9 0.010
## 11 10 0.001

3. Compute cumulative probabilities
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4. Compute quantiles using the inverse
of the CDF

probs <- pbinom(0:10, size = 10, prob = 0.5)
qbinom(probs, size = 10, prob = 0.5)

## [1] 0 1 2 3 4 5 6 7 8 9 10

8



0

1

2

3

4

5

6

7

8

9

10

0.00 0.25 0.50 0.75 1.00
probability

qu
an

til
e

Inverse CDF,  binomial(size=10,prob=0.5)

Continuous random variables

In coin tosses, H and T are discrete possible
outcomes.

• By contrast, variables like reading times
range from 0 milliseconds up–these are con-
tinuous variables.

• Continuous random variables have a proba-
bility density function (PDF) f (·) associ-
ated with them. (cf. PMF in discrete RVs)

• The expression

X ∼ f (·) (5)

means that the random variable X has PDF f (·).
For example, if we say that X ∼ Normal(µ, σ),
we are assuming that the PDF is

f (x | µ, σ) = 1√
2πσ2 exp

−(x − µ)2

2σ2

 (6)

where −∞ < x < +∞
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The normal random variable

The PDF below is associated with the normal
distribution that you are probably familiar with:

f (x | µ, σ) = 1√
2πσ2 exp

−(x − µ)2

2σ2

 (7)

where −∞ < x < +∞.
• The support of X , i.e., the elements of SX ,

has values ranging from −∞ to +∞ (we
can truncate the normal to have finite
values—this comes later)

• µ is the location parameter (here, mean)
• σ is the scale parameter (here, standard

deviation)
In the discrete RV case, we could compute the
probability of a particular event occurring:

extraDistr::dbern(x = 1, prob = 0.5)

## [1] 0.5

dbinom(x = 2, size = 10, prob = 0.5)

## [1] 0.04394531

• In a continuous distribution, probability is
defined as the area under the curve.

• As a consequence, for any particular point
value x, where X ∼ Normal(µ, σ), it is
always the case that Prob(X = x) = 0.

• In any continuous distribution, we can com-
pute probabilities like Prob(x1 < X <

x2) =?, where x1 < x2 by summing up
the area under the curve.
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• To compute probabilities like Prob(x1 <

X < x2) =?, we need the cumulative distri-
bution function.

The cumulative distribution function (CDF) is

P (X < u) = F (X < u) =
∫ u

−∞ f (x) dx (8)

• The integral sign ∫ is just the summation
symbol in continuous space.

• Recall the summation in the CDF of the
Bernoulli!

The standard normal distribution

In the Normal(µ = 0, σ = 1),
• Prob(−1 < X < +1) = 0.68
• Prob(−2 < X < +2) = 0.95
• Prob(−3 < X < +3) = 0.997
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More generally, for any Normal(µ, σ),
• Prob(−1 × σ < X < +1 × σ) = 0.68
• Prob(−2 × σ < X < +2 × σ) = 0.95
• Prob(−3 × σ < X < +3 × σ) = 0.997

The normalizing constant and the kernel

This part of f(x | µ, σ) (call it g(x)) is the
“kernel’ ’ of the normal PDF:

g(x | µ, σ) = exp
−(x − µ)2

2σ2

 (9)

For the above function, the area under the curve
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doesn’t sum to 1:
Sum up the area under the curve ∫

g(x) dx:

normkernel <- function(x, mu = 0, sigma = 1) {
exp((-(x - mu)ˆ2 / (2 * (sigmaˆ2))))

}

integrate(normkernel, lower = -Inf, upper = +Inf)

## 2.506628 with absolute error < 0.00023

The shape doesn’t change of course:
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In simple examples like the one shown here, given
the kernel of some PDF like g(x), we can figure
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out the normalizing constant by solving for k in:

k
∫

g(x) dx = 1 (10)

Solving for k just amounts to computing:

k = 1∫
g(x) dx

(11)

We will see the practical implication of this when
we move on to chapter 2 of the textbook.

The four key functions for the normal distribu-
tion

Recall these key functions for the Bernoulli:

extraDistr::rbern(10, prob = 0.5)

## [1] 0 0 1 1 0 1 1 0 1 1

extraDistr::dbern(x = 1, prob = 0.5)

## [1] 0.5

extraDistr::pbern(q = 1, prob = 0.5)

## [1] 1

extraDistr::qbern(p = 1, prob = 0.5)

## [1] 1

For the binomial:

rbinom(1, size = 10, prob = 0.5)

## [1] 3
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dbinom(x = 2, size = 10, prob = 0.5)

## [1] 0.04394531

pbinom(q = 2, size = 10, prob = 0.5)

## [1] 0.0546875

qbinom(p = 0.0546875, size = 10, prob = 0.5)

## [1] 2

In the continuous case, we also have this family
of d-p-q-r functions. In the normal distribution:
1. Generate random data using rnorm

round(rnorm(5, mean = 0, sd = 1),3)

## [1] -0.348 -0.967 -0.961 -1.909 -0.300

For the standard normal, mean=0, and sd=1
can be omitted (these are the default values in
R).

round(rnorm(5),3)

## [1] -2.057 -0.411 0.207 0.058 -1.171

2. Compute probabilities using CDF:
pnorm
Some examples of usage:

• Prob(X < 2) (e.g., in X ∼ Normal(0, 1))

pnorm(2)

## [1] 0.9772499

• Prob(X > 2) (e.g., in X ∼ Normal(0, 1))
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pnorm(2, lower.tail = FALSE)

## [1] 0.02275013

3. Compute quantiles: qnorm

qnorm(0.9772499)

## [1] 2.000001

4. Compute the probability density:
dnorm

dnorm(2)

## [1] 0.05399097

Note: In the continuous case, this is a den-
sity, the value f(x), not a probability. Cf. the
discrete examples dbern and dbinom, which give
probabilities of a point value x.
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The expectation and variance of an RV

The expectation of a discrete random variable
Y with probability mass function f(y), is defined
as

E[Y ] = ∑
y

y · f (y) (12)

Example: Toss a fair coin once. The possible
events are Tails (represented as 0) and Heads
(represented as 1), each with equal probability,
0.5. The expectation is:

E[Y ] = ∑
y

y ·f (y) = 0 ·0.5+1 ·0.5 = 0.5 (13)

The variance is defined as:

V ar(Y ) = E[Y 2] − E[Y ]2 (14)

In the binomial, Y ∼
(n
k

)
θk(1 − θ)n−k:

• The expectation: E[Y ] = nθ

– Estimated by θ̂ = k
n

• The variance: V ar(Y ) = nθ(1 − θ)
– Estimated by V ar(y) = nθ̂(1 − θ̂)

In the normal, Y ∼ Normal(µ, σ):
• The expectation: E[Y ] = ∫

yf (y) dy = µ

– Estimated by µ̂ = ȳ =
∑

y
n

• The variance: V ar(Y ) = σ2

– Estimated by σ̂2 =
∑(yi−ȳ)2

n−1
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The likelihood function (Binomial)

The likelihood function refers to the PMF
p(k|n, θ), treated as a function of θ.
For example, suppose that we record n = 10 tri-
als, and observe k = 7 successes. The likelihood
function is:

L(θ|k = 7, n = 10) =
10

7

θ7(1 − θ)10−7 (15)

If we now plot the likelihood function for all
possible values of θ ranging from 0 to 1, we get
the plot shown below.
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The MLE (from a particular sample of data
need not invariably give us an accurate estimate
of θ.
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The likelihood function (Normal)

L(µ, σ|x) = Normal(x, µ, σ) (16)

## the data:
x<-0
## the likelihood under different values
## of mu and sigma:
dnorm(x,mean=0,sd=1)

## [1] 0.3989423

dnorm(x,mean=10,sd=1)

## [1] 7.694599e-23

dnorm(x,mean=0,sd=10)

## [1] 0.03989423

dnorm(x,mean=10,sd=10)

## [1] 0.02419707

Assuming that σ = 1, the likelihood function of
µ:
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If we have two independent data points, the joint
likelihood for two arbitrary values of µ and σ:
x1<-0
x2<-1.5
dnorm(x1,mean=0,sd=1) *

dnorm(x2,mean=0,sd=1)

## [1] 0.05167004

## log likelihood:
dnorm(x1,mean=0,sd=1,log=TRUE) +

dnorm(x2,mean=0,sd=1,log=TRUE)

## [1] -2.962877

## more compactly:
x<-c(x1,x2)
sum(dnorm(x,mean=0,sd=1,log=TRUE))

## [1] -2.962877

One practical implication: one can use the log
likelihood to compare competing models’ fit:
## Model 1:
sum(dnorm(x,mean=0,sd=1,log=TRUE))

## [1] -2.962877
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## Model 2:
sum(dnorm(x,mean=10,sd=1,log=TRUE))

## [1] -87.96288

More generally, for independent and identically
distributed data x = x1, . . . , xn:

L(µ, σ|x) =
n∏

i=1
Normal(xi, µ, σ) (17)

or

ℓ(µ, σ|x) =
n∑

i=1
log(Normal(xi, µ, σ)) (18)

Bivariate/multivariate distributions

Data from: Laurinavichyute, A. (2020).
Similarity-based interference and faulty encod-
ing accounts of sentence processing. dissertation,
University of Potsdam.
X: Likert ratings 1-7.
Y: 0, 1 accuracy responses.
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Table 1: The joint PMF for two random variables X and Y.

x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7
y = 0 0.018 0.023 0.04 0.043 0.063 0.049 0.055
y = 1 0.031 0.053 0.086 0.096 0.147 0.153 0.142

The joint PMF: pX,Y (x, y)
For each possible pair of values of X and Y, we
have a joint probability mass function
pX,Y (x, y).
Two useful quantities that we can compute:
The marginal distributions (pX and pY ):

pX(x) = ∑
y∈SY

pX,Y (x, y). (19)

pY (y) = ∑
x∈SX

pX,Y (x, y). (20)

Table 2: The joint PMF for two random variables X and Y, along with the marginal
distributions of X and Y.

x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 p(Y )

y = 0 0.018 0.023 0.04 0.043 0.063 0.049 0.055 0.291
y = 1 0.031 0.053 0.086 0.096 0.147 0.153 0.142 0.709
p(X) 0.049 0.077 0.126 0.139 0.21 0.202 0.197
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pX|Y (x | y) = pX,Y (x, y)
pY (y) (21)

and

pY |X(y | x) = pX,Y (x, y)
pX(x) (22)

Let’s do the calculation for pX|Y (x | y = 0).
Table 3: The joint PMF for two random variables X and Y, along with the marginal
distributions of X and Y.

x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 p(Y )

y = 0 0.018 0.023 0.04 0.043 0.063 0.049 0.055 0.291
y = 1 0.031 0.053 0.086 0.096 0.147 0.153 0.142 0.709
p(X) 0.049 0.077 0.126 0.139 0.21 0.202 0.197

pX|Y (1 | 0) =pX,Y (1, 0)
pY (0)

=0.018
0.291

=0.062

(23)

Next, we turn to continuous bivariate/multivariate
distributions.
The variance-covariance matrix:

Σ =
 σ2

X ρXY σXσY

ρXY σXσY σ2
Y

 (24)

The off-diagonals of this matrix contain the co-
variance between X and Y :

Cov(X, Y ) = ρXY σXσY

The joint distribution of X and Y is defined as
follows:
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X

Y

 ∼ N2


0
0

 , Σ
 (25)

The joint PDF has the property that the volume
under the curve sums to 1.
Formally, we would write the volume under the
curve as a double integral: we are summing up
the volume under the curve for both X and Y

(hence the two integrals).

∫∫
SX,Y

fX,Y (x, y) dxdy = 1 (26)

Here, the terms dx and dy express the fact that
we are computing the volume under the curve
along the X axis and the Y axis.
The joint CDF would be written as follows. The
equation below gives us the probability of ob-
serving a value like (u, v) or some value smaller
than that (i.e., some (u′, v′), such that u′ < u

and v′ < v).

FX,Y (u, v) =Prob(X < u, Y < v)
=

∫ u

−∞

∫ v

−∞ fX,Y (x, y) dydx

for (x, y) ∈ R2
(27)

Just as in the discrete case, the marginal distri-
butions can be derived by marginalizing out the
other random variable:

fX(x) =
∫
SY

fX,Y (x, y) dy fY (y) =
∫
SX

fX,Y (x, y) dx

(28)
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Here, SX and SY are the respective supports.
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Generate simulated bivariate (multivariate)
data

## define a variance-covariance matrix:
Sigma <- matrix(c(5ˆ2, 5 * 10 * 0.6,

5 * 10 * 0.6, 10ˆ2),
byrow = FALSE, ncol = 2

)
## generate data:
u <- MASS::mvrnorm(n = 100, mu = c(0, 0),

Sigma = Sigma)
head(u, n = 3)

## [,1] [,2]
## [1,] -11.940225 -20.047789
## [2,] -3.160155 -4.485012
## [3,] -5.723035 -18.566348
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One practical implication: Such bi/multivariate
distributions become critically important to un-
derstand when we turn to hierarchical (linear
mixed) models.
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