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Textbook

Introduction to Bayesian Data Analysis for Cog-
nitive Science
Nicenboim, Schad, Vasishth

• Online version:
https://bruno.nicenboim.me/bayescogsci/

• Source code:
https://github.com/bnicenboim/bayescogsci

• Physical book:
here
Be sure to read the textbook’s chapter
1 before watching this lecture.

Introduction

This lecture covers some basic ideas in frequentist
statistics that everyone should know. These ideas
are very useful as background knowledge when
studying Bayesian methods.

Reminder from chapter 1: Maximum
likelihood estimates (MLEs)

For the normal distribution, where X ∼
N(µ, σ), and given i = 1, . . . , n independent
data points, we can get MLEs of µ and σ by
computing:

µ̂ = 1
n

n∑
i=1

xi = x̄ (1)
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and

σ̂2 = 1
n

n∑
i=1

(xi − x̄)2 = s2 (2)

you will sometimes see the “unbiased” estimate
(and this is what R computes) but for large sam-
ple sizes the difference is not important:

σ̂2 = 1
n − 1

n∑
i=1

(xi − x̄)2 = s2 (3)

I use x̄ and s to represent the estimates of the
mean and standard deviation from a particular
data-set. µ̂ and σ̂ are the formulas (analytically
derived) for estimating the mean and standard
deviation, and are called the estimators.
The significance of these MLEs is that, having
assumed a particular underlying pdf, we can es-
timate the (unknown) parameters (the mean and
variance/standard deviation) of the distribution
that generated our particular data.
This leads us to the distributional properties of
the mean under (hypothetical) repeated
sampling.

The central limit theorem

For large enough sample sizes, the sampling dis-
tribution of the means will be approximately
normal, regardless of the underlying distribu-
tion (as long as this distribution has a mean and
variance defined for it).
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• So, from a sample of size n, and sd σ, we
can compute the standard deviation
of the sampling distribution of the
means.

• We will call this standard deviation the
standard error.

SE = σ√
n

When estimated from data, we will write
SE = s√

n

I say estimated because we are estimating SE
using an estimate of σ.
The estimated standard error allows us to define
a so-called 95% confidence interval:

x̄ ± 1.96SE (4)

So, for a given sample mean, we define a 95%
confidence interval as follows:

x̄ ± 1.96 s√
n

(5)

I usually just write:

x̄ ± 2 s√
n

(6)

Example with simulated data:

n<-100
x<-rnorm(n,mean=500,sd=100)
mu_hat<-mean(x)
hat_sigma<-sd(x)
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## lower bound:
mu_hat-(2*hat_sigma/sqrt(n))

## [1] 481.4188

## upper bound:
mu_hat+(2*hat_sigma/sqrt(n))

## [1] 524.4087

What does the 95% CI mean?

If you take repeated samples from a particular
distribution, and compute the CI each time, 95%
of those repeatedly computed CIs will contain
the true population mean.

nsim<-100
mu<-0
sigma<-1
lower<-rep(NA,nsim)
upper<-rep(NA,nsim)
for(i in 1:nsim){

x<-rnorm(n,mean=mu,sd=sigma)
lower[i]<-mean(x) - 2 * sd(x)/sqrt(n)
upper[i]<-mean(x) + 2 * sd(x)/sqrt(n)

}

## check how many CIs contain mu:
CIs<-ifelse(lower<mu & upper>mu,1,0)
table(CIs)

## CIs
## 0 1
## 1 99
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## approx. 95% of the CIs contain true mean:
table(CIs)[2]/sum(table(CIs))

## 1
## 0.99

Graphical visualization:
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There is a correspondence between the cor-
rectly computed frequentist CI and the hy-
pothesis testing procedure (see below).
Although some people use Bayesian credible in-
tervals to carry out hypothesis tests (I have also
done this), this is technically not correct because
we do not automatically know the frequentist
properties of the Bayesian credible interval. To
carry out hypothesis tests in a Bayesian ap-
proach, Bayes factors or k-fold cross validation
are needed. See the textbook chapters on model
comparison for more details.

Example of incorrectly computed CIs

If you have repeated measures/dependent data,
then the correct CI is computed after aggrega-
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tion such that you have only one data point per
subject per condition.
Consider these repeated measures data:

library(bcogsci)
data("df_gg05_rc")
head(df_gg05_rc)

## subj item condition RT residRT qcorrect experiment
## 1 1 1 objgap 320 -21.39 0 tedrg3
## 2 1 2 subjgap 424 74.66 1 tedrg2
## 3 1 3 objgap 309 -40.34 0 tedrg3
## 4 1 4 subjgap 274 -91.24 1 tedrg2
## 5 1 5 objgap 333 -8.39 1 tedrg3
## 6 1 6 subjgap 266 -87.32 1 tedrg2

## 8 data points per subject per condition:
t(xtabs(~subj+condition,df_gg05_rc))

## subj
## condition 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
## objgap 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
## subjgap 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
## subj
## condition 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
## objgap 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
## subjgap 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Incorrectly computed CIs per condition:

(means<-with(df_gg05_rc,tapply(RT,condition,mean)))

## objgap subjgap
## 471.3601 369.0744

(sds<-with(df_gg05_rc,tapply(RT,condition,sd)))
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## objgap subjgap
## 464.4060 177.2674

## what should n be?
(n<- length(unique(df_gg05_rc$subj)))

## [1] 42

## wrong lower bound for objgap condition:
means[1]-2*sds[1]/sqrt(n)

## objgap
## 328.0413

## wrong upper bound:
means[1]+2*sds[1]/sqrt(n)

## objgap
## 614.6789

Correctly computed CIs:

agg_gg05<-aggregate(RT~subj+condition,mean,
data=df_gg05_rc)

t(xtabs(~subj+condition,agg_gg05))

## subj
## condition 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
## objgap 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## subjgap 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## subj
## condition 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
## objgap 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## subjgap 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

## Correct CIs:
(means<-with(agg_gg05,tapply(RT,condition,mean)))

## objgap subjgap
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## 471.3601 369.0744

(sds<-with(agg_gg05,tapply(RT,condition,sd)))

## objgap subjgap
## 259.8924 117.6722

## what should n be?
(n<- length(unique(agg_gg05$subj)))

## [1] 42

## correct lower bound for objgap condition:
means[1]-2*sds[1]/sqrt(n)

## objgap
## 391.1556

## correct upper bound:
means[1]+2*sds[1]/sqrt(n)

## objgap
## 551.5647

The t-test

The hypothesis test

Suppose we have a random sample of size n,
and the data come from a N(µ, σ) distribution,
and the data are independent and identically
distributed (for now).
We can estimate sample mean x̄ = µ̂ and and
sample standard deviation s = σ̂, which in turn
allows us to estimate the sampling distribu-
tion of the mean under (hypothetical)
repeated sampling (thanks to the central
limit theorem):
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N(x̄,
s√
n

) (7)

The NHST approach is to set up a null hypoth-
esis that µ has some fixed value. For example:

H0 : µ = µ0 = 0 (8)

This amounts to assuming that the true dis-
tribution of sample means is (approximately)
normally distributed and centered at 0, with
the standard error estimated from the
data.
The intuitive idea is that

• if the sample mean x̄ is “near” the hypoth-
esized µ (here, 0), the data are (possibly)
“consistent with’ ’ the null hypothesis distri-
bution.

• if the sample mean x̄ is far from the hypoth-
esized µ, the data are inconsistent with the
null hypothesis distribution.

We formalize “near” and “far” by determining
the value of the number t, which represents how
many standard errors the sample mean is distant
from the hypothesized mean:

t × SE = x̄ − µ (9)

The above equation quantifies the distance of
sample mean from µ in SE units.
So, given a sample and null hypothesis mean µ,
we can compute the quantity:
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t = x̄ − µ

SE
(10)

We will call this the observed t-value.
The random variable T:

T = X̄ − µ

SE
(11)

has a t-distribution, which is defined in terms
of the sample size n. We will express this as:
T ∼ t(n − 1).
Note also that, as n approaches infinity, T ∼
N(0, 1).
Thus, given a sample size n, and given our null
hypothesis, we can draw t-distribution corre-
sponding to the null hypothesis distribution.
For large n, we could even use N(0,1), although
it is traditional to always use the t-distribution
no matter how large n is.
Compare the t-distribution t(21) (solid line) with
Normal(0,1) (broken line).

x<-seq(-4,4,by=0.01)
plot(x,dt(x,df=20),type="l")
lines(x,dnorm(x),lty=2)

11



−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

dt
(x

, d
f =

 2
0)

Now compare the t-distribution t(1000) (solid
line) with Normal(0,1) (broken line).

plot(x,dt(x,df=1000),type="l")
lines(x,dnorm(x),lty=2,col="red")
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The hypothesis testing procedure

So, the null hypothesis testing procedure is:
• Define the null hypothesis: for example, H0 :

µ = 0.
• Given data of size n, estimate x̄, standard

deviation s, standard error s/
√

n.
• Compute the observed t-value:
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tobserved = x̄ − µ

s/
√

n
(12)

- Reject null hypothesis if the observed t-value
is large (defined below).

Rejection region

So, for large sample sizes, if | t |> 2 (approxi-
mately), we can reject the null hypothesis.
For a smaller sample size n (say 42), you can
compute the exact critical t-value:

n<-42
qt(0.025,df=n-1)

## [1] -2.019541

This is the critical t-value on the left-hand
side of the t-distribution. The corresponding
value on the right-hand side is:

qt(0.975,df=n-1)

## [1] 2.019541

Their absolute values are of course identical (the
distribution is symmetric when the t-distribution
is centered on 0).

The p-value

This is the probability of observing a t-value at
least as extreme as the one you observed, under
the assumption that the null hypothesis
is true.

• The p-value does not tell you anything about
the specific research hypothesis; you only
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know how unlikely the observed t-value (or
something more extreme) is, assuming
that the null is true.

• It does not tell you the probability of the
null being true: P (|t||H0) ̸= P (H0).

• A significant p-value doesn’t necessarily
mean that the effect is real or reliable.

• A non-significant p-value does not necessar-
ily mean that the effect is absent or 0.

• The multiple comparisons problem (below)
complicates the interpretation of the p-value
considerably.

The only way to establish whether an effect is
“real” or not is by actual replication (holds for
Bayes as well).

R syntax you should know

Given iid data (Note: aggregated!):

OR<-subset(agg_gg05,condition=="objgap")$RT
SR<-subset(agg_gg05,condition=="subjgap")$RT
diff<-OR-SR
## one sample t-test:
t.test(diff)

##
## One Sample t-test
##
## data: diff
## t = 3.1093, df = 41, p-value = 0.003404
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 35.85024 168.72119
## sample estimates:
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## mean of x
## 102.2857

## paired t-test:
t.test(OR,SR,paired=TRUE)

##
## Paired t-test
##
## data: OR and SR
## t = 3.1093, df = 41, p-value = 0.003404
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## 35.85024 168.72119
## sample estimates:
## mean difference
## 102.2857

You should know when to aggregate
data to meet the one sample (=paired)
t-test’s assumptions.

A very common mistake is to forget or neglect
to aggregate the data. The following is wrong:

OR<-subset(df_gg05_rc,condition=="objgap")$RT
SR<-subset(df_gg05_rc,condition=="subjgap")$RT
diff<-OR-SR
## one sample t-test (WRONG):
t.test(diff)

##
## One Sample t-test
##
## data: diff
## t = 3.9997, df = 335, p-value = 7.81e-05
## alternative hypothesis: true mean is not equal to 0
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## 95 percent confidence interval:
## 51.98059 152.59084
## sample estimates:
## mean of x
## 102.2857

## paired t-test (WRONG):
t.test(OR,SR,paired=TRUE)

##
## Paired t-test
##
## data: OR and SR
## t = 3.9997, df = 335, p-value = 7.81e-05
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## 51.98059 152.59084
## sample estimates:
## mean difference
## 102.2857

Look at the degrees of freedom–they are wrong
(we have only 42 subjects, so it should have been
41).

Type I, II error, power

Reality: H0 TRUE H0 FALSE
Decision: ‘reject’: α 1 − β

Type I error Power

Decision: ‘fail to reject’: 1 − α β

Type II error
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Computing power

Power, which is calculated before a study is
conducted, is a function of three variables:

• effect size
• standard deviation
• sample size

A quick way to get a ballpark estimate of power
is by using the power.t.test function in R.
Example: what sample size do we need in a
standard within-subjects design (like the two-
condition relative clause study mentioned above)
to reach 80% power if the true effect size were
15 ms, with a standard deviation of 150 ms?

power.t.test(n=NULL,
delta=15,
sd=150,
sig.level=0.05,
power=0.80,
alternative="two.sided",
type="one.sample",
strict=TRUE)

17



##
## One-sample t test power calculation
##
## n = 786.8089
## delta = 15
## sd = 150
## sig.level = 0.05
## power = 0.8
## alternative = two.sided

In this example, something close to 800 subjects
would be needed to achieve 80% power.
For more complex designs, we use simulation to
compute power. See my frequentist textbook
draft for more:
https://vasishth.github.io/Freq_CogSci/

Type M error

If your true effect size is believed to be D, then
we can compute (apart from statistical power)
this error rate, which is defined as follows:
Type M error: the expectation of the ratio
of the absolute magnitude of the effect to the
hypothesized true effect size, given that result
is significant. Gelman and Carlin also call this
the exaggeration ratio, which is perhaps more
descriptive than “Type M error.’ ’
Here’s a visualization of Type M error in action,
under low statistical power.
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Multiple comparisons inflate Type I er-
ror
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The theoretical probability of rejecting at least
one test incorrectly: 1 − 0.953 = 0.143.

• It is common practice in linguistics, psychol-
ogy, and other areas, to carry out multiple
t-tests/ANOVA comparisons, fixing Type I
error at 0.05.

• It seems to be not well-understood (even
among established scientists) that multiple
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comparisons will inflate Type I error.

Example: 29 × 5 = 145 tests

Figure 1: Gouvea et al 2010. Language and Cognitive Processes

Source: Gouvea et al 2010. Language and Cog-
nitive Processes.

Example: 20 tests

Source: Liversedge et al., 2024. Cognition.

Example: At least 18 tests (probably more)

All my own work, published during the period
2002 to 2016, has this Type I inflation problem.
Source: Vasishth and Lewis, 2006. Language.
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Figure 2: Liversedge et al., 2024. Cognition.

Figure 3: Vasishth and Lewis, 2006. Language.
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Demonstration using simulation

If we do a single t-test when the null is actually
true, our Type I error is 0.05:

nsim<-1000
pvals<-rep(NA,nsim)
for(i in 1:nsim){

y<-rnorm(10,mean=0,sd=1)
pvals[i]<-t.test(y)$p.value

}
mean(pvals<0.05)

## [1] 0.06

If we do two t-tests when the null in all the
analyses is actually true, our Type I error is no
longer 0.05:

nsim<-1000
ntests<-2
pvals<-matrix(rep(NA,nsim*ntests),ncol=ntests)
for(j in 1:ntests){

for(i in 1:nsim){
y<-rnorm(10,mean=0,sd=1)
pvals[i,j]<-t.test(y)$p.value

}
}

head(pvals)

## [,1] [,2]
## [1,] 0.2227763 0.04618541
## [2,] 0.7433136 0.97112086
## [3,] 0.8559875 0.58501021
## [4,] 0.3284245 0.90432025
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## [5,] 0.8683764 0.69789140
## [6,] 0.4849970 0.86804439

What is the probability that at least one of the
two tests comes out significant despite the null
being true in both cases?

sig<-rep(NA,nsim)
for(i in 1:nsim){
if(pvals[i,1]<0.05 | pvals[i,2]<0.05){

sig[i]<-1
} else {

sig[i]<-0
}
}

## The probability that at least
## one t-test comes out significant:
mean(sig>0)

## [1] 0.103

This inflation of Type I error is called the multi-
ple comparisons problem.
The more t-tests/F-tests you do, the higher the
Type I error.
Let’s write a function that computes the Type
I error when we do n hypothesis tests, where n
can be 1,2,3,. . .
The full function is not visible here (see the R
source code).
Let’s test the function with some ntest values.
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## ntests=1
computeTypeI(ntests=1)

## [1] 0.048

## ntests=2
computeTypeI(ntests=2)

## [1] 0.105

## ntests=3
computeTypeI(ntests=3)

## [1] 0.142

Let’s plot a figure showing how Type I error will
inflate as we increase the number of tests:

n<-150
inflation<-rep(NA,n)
for(i in 1:n){

inflation[i]<-computeTypeI(ntests=i)
}
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So, once you have done some 100 statistical tests,
you are basically guaranteed to obtain some
significant effect or the other, even if the null
were in fact true.

24



A solution to the multiple comparisons problem

If working in the frequentist framework, just do
a Bonferroni correction. If you do n tests, the
new α is 0.05/n.

Comparison to Bayes

In the classical Bayesian framework, there is no
concept of Type I/II error. There, the focus is
rather on uncertainty quantification. More
on that later.
Of course, one can think about the frequentist
properties of Bayesian hypothesis tests; in that
approach, you will run into the same Type I error
inflation problems as in the classical frequentist
approach.

Linear models

We consider the case where we have two condi-
tions (e.g., subject and object relatives), and a
repeated measures design. The dependent mea-
sure is reading times in milliseconds.
If you are not familiar with relative clauses, just
imagine doing an experiment with two types of
sentences, an easy-to-read sentence type and a
difficult-to-read sentence type, and measuring
reading time difference between the hard and
easy conditions.
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Treatment contrast coding

The alphabetically first condition level is coded
0, and the other condition level is coded 1. E.g.,
if condition labels are objgap and subjgap, then
objgap is coded 0 and subjgap 1. You can change
this with the command (not run):
## this code has not been run:
## code subj as 0 and obj as 1:
df_gg05_rc$condition<-

factor(df_gg05_rc$condition,
levels=c("subjgap","objgap"))

In mathematical form, the linear model is:

rt = β0 + β1condition + ϵ (13)

where
• β0 is the mean for the object relative
• *condition& has value 0 (object relative) or

1 (subject relative)
• β1 is the amount by which the object relative

mean must be changed to obtain the mean
for the subject relative.

agg_gg05$condition<-factor(agg_gg05$condition)
contrasts(agg_gg05$condition)

## subjgap
## objgap 0
## subjgap 1

## this model is wrong for these data:
m<-lm(RT ~ condition, agg_gg05)
round(summary(m)$coefficients,2)
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## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 471.36 31.13 15.14 0.00
## conditionsubjgap -102.29 44.02 -2.32 0.02

The null hypothesis of interest is that the differ-
ence in means between the two relative clause
types β1 is:
H0 : β1 = 0
We will make a distinction between the un-
known true mean β0, β1 and the estimated
mean from the data β̂0, β̂1. These estimated
means are maximum likelihood estimates of the
parameters.

• Estimated mean object relative processing
time: β̂0 = 471 ms.

• Estimated mean subject relative processing
time: β̂0 + β̂1 = 471 + (−102) = 369.

Sum contrast coding

Alternatively, we can code objgap as +1 and
subjgap as −1 (or vice versa).
Equivalently: objgap as +1/2 and subjgap as
−1/2 (or vice versa).
With ±1 coding:

agg_gg05$so<-ifelse(agg_gg05$condition=="objgap",
1,-1)

## this model is wrong:
m_sum<-lm(RT~so,agg_gg05)
round(summary(m_sum)$coefficients,2)

## Estimate Std. Error t value Pr(>|t|)
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## (Intercept) 420.22 22.01 19.09 0.00
## so 51.14 22.01 2.32 0.02

• Estimated grand mean processing time:
β̂0 = 420 ms.

• Estimated mean object relative processing
time: β̂0 + β̂1 = 420 + 1 × 51 = 471.

• Estimated mean subject relative processing
time: β̂0 − β̂1 = 420 + (−1) × 51 = 369.

This kind of parameterization is called sum-to-
zero contrast or more simply sum contrast
coding. This is the coding we will use.
The null hypothesis for the slope is

H0 : 1×µobj + (−1×)µsubj = 0 (14)

or:

H0 : µobj = µsubj (15)

The sum contrasts are referring to the ±1 terms
in the null hypothesis:

• object relative: +1
• subject relative: -1

The model is:
Estimated object relative reading times:

rt = 420×1 + 51×1 (16)

Estimated subject relative reading times:

rt = 420×1 + 51× − 1 (17)
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The ϵ has been dropped here because the mean
of the random variable ϵ is 0.

The normality assumption of the residuals in
the linear models

The model is:

rt = β0+β1+ϵ where ϵ ∼ Normal(0, σ) (18)

It is an assumption of the linear model that
the residuals are (approximately) normally dis-
tributed.
This assumption is not crucial if our goal is only
to estimate the parameters.
However, this assumption is crucial if we are
doing hypothesis testing.
We can check this assumption in R. This
model is wrong for these data.

m<-lm(RT ~ condition, agg_gg05)
car::qqPlot(residuals(m))
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If the residuals were approximately normally dis-
tributed, the quantiles of the standard normal
and the residuals would align, leading to a di-
agonal line angled at 45 degrees (not the case
here).
A log-transform would improve the situation
here:

m<-lm(log(RT) ~ condition, agg_gg05)
car::qqPlot(residuals(m))
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Linear mixed models

The correct model for the aggregated data:

library(lme4)

## Loading required package: Matrix

m1<-lmer(RT ~ condition + (1|subj), agg_gg05)
## compare with the paired t-test result above!
## They are exactly the same.
summary(m1)$coefficients

## Estimate Std. Error t value
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## (Intercept) 471.3601 31.12777 15.142753
## conditionsubjgap -102.2857 32.89632 -3.109336

OR<-subset(agg_gg05,condition=="objgap")$RT
SR<-subset(agg_gg05,condition=="subjgap")$RT
diff<-SR-OR
## one sample t-test:
t.test(diff)

##
## One Sample t-test
##
## data: diff
## t = -3.1093, df = 41, p-value = 0.003404
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -168.72119 -35.85024
## sample estimates:
## mean of x
## -102.2857

The linear mixed model with varying
intercepts (on the aggregated data) is
exactly the one-sample (paired) t-test.

Residuals check:

car::qqPlot(residuals(m1))

31



−2 −1 0 1 2

−
20

0
0

10
0

30
0

50
0

norm quantiles

re
si

du
al

s(
m

1)

37

33

## [1] 37 33

The correct way to analyze these data are us-
ing linear mixed models on the unaggregated
data, and carrying out a log transform on the
data:

df_gg05_rc$so<-ifelse(df_gg05_rc$condition=="objgap",
1,-1)

m2<-lmer(log(RT) ~ so +
(1+so|subj) + (1+so| item),

df_gg05_rc)

## boundary (singular) fit: see help('isSingular')

summary(m2)$coefficients

## Estimate Std. Error t value
## (Intercept) 5.88305598 0.05202442 113.08258
## so 0.06201673 0.02466207 2.51466

The convergence warning is due to data sparsity,
leading to an inability to estimate the varying
intercepts/slopes correlation for items.
For a full and formal review of linear models
(including linear mixed modeling), see:
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https://github.com/vasishth/LM
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