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Textbook

Introduction to Bayesian Data Analysis for Cog-
nitive Science
Nicenboim, Schad, Vasishth

• Online version: https://bruno.nicenboim.
me/bayescogsci/

• Source code: https://github.com/bnicenboi
m/bayescogsci

• Physical book: here
Be sure to read the textbook’s chapter
2 in addition to watching this lecture.

Bayes’ rule

Bayes’ rule: When A and B are observable dis-
crete events (such as “it has been raining” or
“the streets are wet”), we can state the rule as
follows:
Bayes’ rule in terms of discrete events:

P (A | B) = P (B | A)P (A)
P (B)

(1)

Bayes’ rule in terms of probability distributions:

p(Θ|y) =
p(y|Θ) × p(Θ)

p(y)
(2)

The above statement can be rewritten in words
as follows:

Posterior = Likelihood × Prior
Marginal Likelihood

(3)
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The terms here have the following meaning. We
elaborate on each point with an example below.

• The Posterior, p(Θ|y), is the probability
distribution of the parameter(s) conditional
on the data.

• The Likelihood, p(y|Θ) is as described in
chapter 1: it is the PMF (discrete case) or
the PDF (continuous case) expressed as a
function of Θ.

• The Prior, p(Θ), is the initial probability
distribution of the parameter(s), before see-
ing the data.

• The Marginal Likelihood, p(y), was intro-
duced in chapter 1 and standardizes the pos-
terior distribution to ensure that the area
under the curve of the distribution sums to
1, that is, it ensures that the posterior is a
valid probability distribution.

Two examples will clarify all these terms.

An analytical example (Beta-Binomial)

Consider the following experiment. Subjects are
shown the following sentence just once. The
number of trials is therefore 100.
“It’s raining. I’m going to take the . . . ”

• Assume that we have 100 subjects
• 80 subjects complete the sentence with “um-

brella”
• The estimated cloze probability or pre-

dictability (given the preceding context)
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would be θ̂ = 80
100 = 0.8.

The variability of the estimated probability un-
der repeated sampling (100 experiments), given
different sample sizes (number of trials, or size).
First, consider a 100 experiments with 10 inde-
pendent trials each.

estimated_means <- rbinom(100,
size = 10,
prob = 0.8) / 10

sd(estimated_means)

## [1] 0.127426

Compare with a much larger number of trials
(100):

estimated_means <- rbinom(100,
size = 100,
prob = 0.8) / 100

sd(estimated_means)

## [1] 0.03568592

The repeated runs of the (simulated) experiment
are giving us different point estimates of θ, and
the variability in the estimate of θ under repeated
sampling depends on the sample size.
What if we treat θ as a random variable? Sup-
pose that θ ∼ Uniform(0, 1).
Now, if we were to run our simulated experiments
again and again, there would be two sources of
variability in the estimate of the parameter: the
data as well as the uncertainty associated with
θ.
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theta <- runif(100, min = 0, max = 1)
estimated_means <- rbinom(100,

size = 10,
prob = theta) / 10

sd(estimated_means)

## [1] 0.2879745

The higher standard deviation is now coming
from the uncertainty associated with the θ pa-
rameter.
Suppose θ ∼ Uniform(0.3, 0.8). Now, the vari-
ability in the estimate is much smaller:

theta <- runif(100, min = 0.3, max = 0.8)
estimated_means <- rbinom(n=100,

size = 10,
prob = theta) / 10

sd(estimated_means)

## [1] 0.2148502

In other words, the greater the prior uncertainty
associated with the parameter θ, the greater the
variability in the estimated means from the data.

• Frequentists: the true, unknown value of θ

is some point value.
• Bayesians: θ is a random variable with a

probability density/mass function associated
with it. This PDF is called a prior distribu-
tion, and represents our prior belief or prior
knowledge about possible values of this pa-
rameter.

• Once we obtain data, these data serve to
modify our prior belief about this distribu-
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tion; this updated probability density func-
tion of the parameter is called the posterior
distribution.

Choosing a likelihood

Under the assumptions we have set up above,
the responses follow a binomial distribution, and
so the PMF can be written as follows.

p(k|n, θ) =
n

k

θk(1 − θ)n−k (4)

• k indicates the number of times “umbrella”
is given as an answer

• n is the number of trials.
If we collect 100 data points and it turns out
that k = 80, these data are now a fixed quantity.
The only variable now in the PMF above is θ:

p(k = 80|n = 100, θ) =
100

80

θ80(1 − θ)20 (5)

The above function is a now a continuous func-
tion of the value θ, which has possible values
ranging from 0 to 1. Compare this to the PMF
of the binomial, which treats θ as a fixed value
and defines a discrete distribution over the n + 1
possible discrete values k that we can observe
(the possible number of successes).
We can now rewrite the PMF as a likelihood
function:
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L(θ|k = 80, n = 100) =
100

80

θ80(1−θ)20 (6)

We now find out, using Bayes’ rule, the poste-
rior distribution of θ given our data: p(θ|n, k).
Missing: a prior distribution over the parameter
θ, which expresses our prior uncertainty about
plausible values of θ.

Choosing a prior for θ

The parameter θ is a random variable that has a
PDF whose range lies within [0,1], the range over
which θ can vary (this is because θ represents a
probability).
The beta distribution, which is a PDF for a
continuous random variable, is commonly used
as prior for parameters representing probabilities.
One reason for this choice is that its PDF ranges
over the interval [0, 1]. The other reason for this
choice is that it makes the Bayes’ rule calculation
remarkably easy.
The beta distribution has the following PDF.

p(θ|a, b) = 1
B(a, b)

θa−1(1 − θ)b−1 (7)

The term B(a, b) expands to ∫ 1
0 θa−1(1−θ)b−1 dθ,

and is the normalizing constant; it ensures that
the area under the curve sums to one.
The beta distribution’s parameters a and b can
be interpreted as expressing our prior beliefs
about the probability of success; a represents
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the number of “successes”, in our case, answers
that are “umbrella” and b the number of failures,
the answers that are not “umbrella.” The fig-
ure below shows the different beta distribution
shapes given different values of a and b.
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Figure 1: Examples of beta distributions with different parame-
ters.

As in the binomial and normal distributions that
we saw in chapter 1, one can analytically derive
the formulas for the expectation and variance of
the beta distribution. These are:

E[X ] = a

a + b
Var(X) = a × b

(a + b)2(a + b + 1)
(8)

As an example, choosing a = 4 and b = 4 would
mean that the answer “umbrella” is as likely as
a different answer, but we are relatively unsure
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about this. We could express our uncertainty
by computing the region over which we are 95%
certain that the value of the parameter lies; this
is the 95% credible interval. For this, we would
use the qbeta() function in R; the parameters
a and b are called shape1 and shape2 in R.

qbeta(c(0.025, 0.975),
shape1 = 4,
shape2 = 4)

## [1] 0.1840516 0.8159484

If we were to choose a = 10 and b = 10, we
would still be assuming that a priori the answer
“umbrella” is just as likely as some other answer,
but now our prior uncertainty about this mean
is lower, as the 95% credible interval computed
below shows.

qbeta(c(0.025, 0.975),
shape1 = 10,
shape2 = 10)

## [1] 0.2886432 0.7113568

In the figure above, we can also see the difference
in uncertainty in these two examples graphically.
Which prior should we choose? See the online
chapter on priors.
For the moment, just for illustration, we choose
the values a = 4 and b = 4 for the beta prior.
Then, our prior for θ is the following beta PDF:

p(θ) = 1
B(4, 4)

θ3(1 − θ)3 (9)
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Having chosen a likelihood, and having defined
a prior on θ, we are ready to carry out our first
Bayesian analysis to derive a posterior distribu-
tion for θ.

Using Bayes’ rule to compute the posterior
p(θ|n, k)

Having specified the likelihood and the prior, we
will now use Bayes’ rule to calculate p(θ|n, k).
Using Bayes’ rule simply involves replacing the
likelihood and the prior we defined above into
the equation we saw earlier:

Posterior = Likelihood × Prior
Marginal Likelihood

(10)

Replace the terms for likelihood and prior into
this equation:

p(θ|n = 100, k = 80) (11)

The above expands to:

[(100
80

)
θ80 × (1 − θ)20

]
×

[
1

B(4,4) × θ3(1 − θ)3
]

p(k = 80)

where p(k = 80) is ∫ 1
0 p(k = 80|n =

100, θ)p(θ) dθ. This term will be a con-
stant once the number of successes k is known.
In fact, once k is known, there are several
constant values in the above equation; they are
constants because none of them depend on the
parameter of interest, θ. We can collect all of
these together:
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(100

80
)

B(4, 4) × p(k = 80)

 [θ80(1−θ)20 ×θ3(1−θ)3]

The first term that is in square brackets,
(100

80 )
B(4,4)×p(k=80), is all the constants collected to-
gether, and is the normalizing constant we have
seen before; it makes the posterior distribution
p(θ|n = 100, k = 80) sum to one.
Since it is a constant, we can ignore it for now
and focus on the two other terms in the equation.
Because we are ignoring the constant, we will
now say that the posterior is proportional to the
right-hand side.

p(θ|n = 100, k = 80) ∝ [θ80(1−θ)20×θ3(1−θ)3]
(12)

A common way of writing the above equation is:

Posterior ∝ Likelihood × Prior (13)

Resolving the right-hand side now simply in-
volves adding up the exponents! In this example,
computing the posterior really does boil down to
this simple addition operation on the exponents.

p(θ|n = 100, k = 80) ∝ [θ80+3(1−θ)20+3] = θ83(1−θ)23

(14)
The expression on the right-hand side corre-
sponds to a beta distribution with parameters
a = 84, and b = 24.
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This becomes evident if we rewrite the right-
hand side such that it represents the kernel of a
beta PDF. All that is missing is a normalizing
constant.

θ83(1 − θ)23 = θ84−1(1 − θ)24−1 (15)

Without a normalizing constant, the area under
the curve will not sum to one. Let’s check this:

PostFun <- function(theta) {
thetaˆ84 * (1 - theta)ˆ24

}
(AUC <- integrate(PostFun,

lower = 0,
upper = 1)$value)

## [1] 1.424179e-26

So the area under the curve (AUC) is not 1—the
posterior that we computed above is not a proper
probability distribution. What we have just done
above is to compute the following integral:

∫ 1
0 θ84(1 − θ)24 (16)

We can use this integral to figure out what the
normalizing constant is. Basically, we want to
know what the constant k is such that the area
under the curve sums to 1:

k
∫ 1
0 θ84(1 − θ)24 = 1 (17)

We know what ∫ 1
0 θ84(1 − θ)24 is; we just com-

puted that value (called AUC in the R code
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above). So, the normalizing constant is:

k = 1∫ 1
0 θ84(1 − θ)24 = 1

AUC
(18)

So, all that is needed to make the kernel θ84(1 −
θ)24 into a proper probability distribution is to
include a normalizing constant, which, according
to the definition of the beta distribution (equa-
tion, would be B(84, 24). This term is in fact
the integral we computed above.
So, what we have is the distribution of θ given
the data, expressed as a PDF:

p(θ|n = 100, k = 80) = 1
B(84, 24)

θ84−1(1−θ)24−1

(19)
Now, this function will sum to one:

PostFun <- function(theta) {
thetaˆ84 * (1 - theta)ˆ24 / AUC

}
integrate(PostFun, lower = 0, upper = 1)$value

## [1] 1

Summary of the procedure

To summarize, we:
• started with data (n = 100, k = 80)
• assumed a binomial likelihood
• multiplied the likelihood function with

the prior probability density function
θ ∼ Beta(4, 4)
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• obtained the posterior p(θ|n, k) =
Beta(84, 24)

The constants were ignored when carrying out
the multiplication; we say that we computed the
posterior up to proportionality.
Finally, we showed how, in this simple example,
the posterior can be rescaled to become a proba-
bility distribution, by including a proportionality
constant.
The above example is a case of a conjugate
analysis: the posterior on the parameter has the
same form (belongs to the same family of prob-
ability distributions) as the prior. The above
combination of likelihood and prior is called the
beta-binomial conjugate case. There are several
other such combinations of Likelihoods and Pri-
ors that yield a posterior that has a PDF that
belongs to the same family as the PDF on the
prior; some examples will appear in the exercises.
Formally, conjugacy is defined as follows: Given
the likelihood p(y|θ), if the prior p(θ) results in a
posterior p(θ|y) that has the same form as p(θ),
then we call p(θ) a conjugate prior.
For the beta-binomial conjugate case, we can
derive a very general relationship between the
likelihood, prior, and posterior. Given the bino-
mial likelihood up to proportionality (ignoring
the constant) θk(1 − θ)n−k, and given the prior,
also up to proportionality, θa−1(1 − θ)b−1, their
product will be:
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θk(1−θ)n−kθa−1(1−θ)b−1 = θa+k−1(1−θ)b+n−k−1

(20)
Thus, given a Binomial(n, k|θ) likelihood, and
a Beta(a, b) prior on θ, the posterior will be
Beta(a + k, b + n − k).

Visualizing the prior, likelihood, and posterior

We established in the example above that the
posterior is a beta distribution with parameters
a = 84, and b = 24. We visualize the likelihood,
prior, and the posterior side by side in the figure
below.
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Figure 2: The (scaled) likelihood, prior, and posterior in the
beta-binomial conjugate example. The likelihood is scaled to
integrate to 1 to make it easier to compare to the prior and
posterior distributions.

We can summarize the posterior distribution
either graphically as we did above, or summarize
it by computing the mean and the variance. The
mean gives us an estimate of the cloze probability
of producing “umbrella” in that sentence (given
the model, i.e., given the likelihood and prior):

E[θ̂] = 84
84 + 24

= 0.78 (21)
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var[θ̂] = 84 × 24
(84 + 24)2(84 + 24 + 1)

= 0.0016

(22)
We could also display the 95% credible interval,
the range over which we are 95% certain that θ

lies, given the data and model.

qbeta(c(0.025, 0.975), shape1 = 84, shape2 = 24)

## [1] 0.6951283 0.8506904

Typically, we would summarize the results of
a Bayesian analysis by displaying the poste-
rior distribution of the parameter (or parame-
ters) graphically, along with the above summary
statistics: the mean, the standard deviation or
variance, and the 95% credible interval. You will
see many examples of such summaries later.

The posterior distribution is a compromise be-
tween the prior and the likelihood

Recall from the preceding sections that the a

and b parameters in the beta distribution deter-
mine the shape of the prior distribution on the
θ parameter. Just for the sake of illustration,
let’s take four different beta priors, which reflect
increasing prior certainty about θ.

• Beta(a = 2, b = 2)
• Beta(a = 3, b = 3)
• Beta(a = 6, b = 6)
• Beta(a = 21, b = 21)

Each of these priors reflects a belief that θ = 0.5,
but with varying degrees of (un)certainty. Given

16



the general formula we developed above for the
beta-binomial case, we just need to plug in the
likelihood and the prior to get the posterior:

p(θ|n, k) ∝ p(k|n, θ)p(θ) (23)

The four corresponding posterior distributions
would be:

p(θ | k, n) ∝ [θ80(1−θ)20][θ2−1(1−θ)2−1] = θ82−1(1−θ)22−1

(24)

p(θ | k, n) ∝ [θ80(1−θ)20][θ3−1(1−θ)3−1] = θ83−1(1−θ)23−1

(25)

p(θ | k, n) ∝ [θ80(1−θ)20][θ6−1(1−θ)6−1] = θ86−1(1−θ)26−1

(26)

p(θ | k, n) ∝ [θ80(1−θ)20][θ21−1(1−θ)21−1] = θ101−1(1−θ)41−1

(27)
We can visualize each of these triplets of priors,
likelihoods and posteriors; see the figure below.
Given some data and given a likelihood function,
the tighter the prior, the greater the extent to
which the posterior orients itself towards the
prior. In general, we can say the following about
the likelihood-prior-posterior relationship:

• The posterior distribution of a parameter
is a compromise between the prior and the
likelihood.
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Figure 3: The (scaled) likelihood, prior, and posterior in the
beta-binomial conjugate example, for different uncertainties in
the prior. The likelihood is scaled to integrate to 1 to make its
comparison easier.

• For a given set of data, the greater the cer-
tainty in the prior, the more heavily will the
posterior be influenced by the prior mean.

• Conversely, for a given set of data, the
greater the uncertainty in the prior, the
more heavily will the posterior be influenced
by the likelihood.

Another important observation emerges if we
increase the sample size (here, the number of
trials) from 100 to, say, 1000000. Suppose we
still get a sample mean of 0.8 here, so that
k = 800000. Now, the posterior mean will be
influenced almost entirely by the sample mean.
This is because, in the general form for the pos-
terior Beta(a + k, b + n − k) that we computed
above, the n and k become very large relative
to the a, b values, and dominate in determining
the posterior mean.
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Whenever we do a Bayesian analysis, it is good
practice to check whether the parameter you are
interested in estimating is sensitive to the prior
specification. Such an investigation is called a
sensitivity analysis. Later in this book, we
will see many examples of sensitivity analyses in
realistic data-analysis settings.

Incremental knowledge gain using prior knowl-
edge

Our posterior in the example with a Beta(4, 4)
prior was Beta(84, 24).
We could now use this posterior as our prior
for the next study. Suppose that we were to
carry out a second experiment, again with 100
subjects, and this time 60 produced “umbrella.”
We could now use our new prior (Beta(84, 24))
to obtain an updated posterior. We have a =
84, b = 24, n = 100, k = 60. This gives us as
posterior:

Beta(a+k, b+n−k) = Beta(84+60, 24+100−60) = Beta(144, 64)

Now, if we were to pool all our data that we
have from the two experiments, then we would
have as data n = 200, k = 140. Suppose that
we keep our initial prior of a = 4, b = 4. Then,
our posterior would be

Beta(4 + 140, 4 + 200 − 140) = Beta(144, 64)

This is exactly the same posterior that we got
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when first analyzed the first 100 subjects’ data,
derived the posterior, and then used that poste-
rior as a prior for the next 100 subjects’ data.
This toy example illustrates an important point
that has great practical importance for cognitive
science:
One can incrementally gain information about
a research question by using information from
previous studies and deriving a posterior, and
then use that posterior as a prior for the next
study. This approach allows us to build on the
information available from previous work.

A second analytical example (Poisson-
Gamma)

Suppose we are modeling the total number of
regressions (leftward eye movements) per word
in an eyetracking study (data from Vasishth et
al., 2011):

dat<-read.table(file="data/TRCexample.txt",
header=TRUE)

head(dat,n=3)

## subject condition item variable value
## 8425 1 d 16 TRC 0
## 8426 1 d 16 TRC 0
## 8427 1 d 16 TRC 4
Source: Shravan Vasishth, Katja Suckow, Richard L. Lewis, and Sabine
Kern. Short-term forgetting in sentence comprehension: Crosslinguis-
tic evidence from head-final structures. Language and Cognitive
Processes, 25:533–567, 2011

summary(dat$value)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
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## 0.000 0.000 1.000 1.165 2.000 21.000 2158

• The number of times x that regressions occurred from a
word can be modeled by a Poisson distribution:

• The Poisson distribution (discrete) has one parameter (the
rate):

f(x | λ) = exp(−λ)λx

x! (28)

- The rate (the mean no. of regressions per word) λ > 0 is unknown
- x ≥ 0 (a vector): the observed numbers of regressions per word
are assumed to be independent given λ (Note: this assumption
is incorrect here, as we have repeated measures from
each subject; however, we ignore this detail for now).

Simulated data (n=10, number of independent data points):
(x<-rpois(n=10,lambda=3))

## [1] 3 0 3 3 4 2 0 3 4 3

Visualization with λ = 3:
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• Suppose that prior research (or expert knowledge) suggests
that the prior mean of λ is 3 and prior variance for λ is 1.5.

• The first step is to define a PDF for λ; this will reflect our
prior belief, before seeing any new data.

• One good choice (but not the only possible choice!) is the
gamma(a,b) distribution.

The gamma PDF (continuous) for some variable x (parameters
a, b > 0):

f(x | a, b) =


ba exp(−bx)xa−1

Γ(a) if x ≥ 0
0 if x < 0

(29)

Here, Γ(a) = (a−1)! for integer values of a. ba

Γ(a) is the normalizing
constant.

In R, the a,b parameters are called shape and rate, respectively.

Simulated data from Gamma(a=3,b=1):
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round(rgamma(n=10,shape=3,rate=1),2)

## [1] 2.24 3.87 4.67 1.31 1.26 3.99 2.57 3.21 3.09 3.25

Visualize the Gamma PDF with a=3,b=1:
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In order to decide on the prior:

λ ∼ Gamma(a, b)

we first need to figure out the parameters for a gamma density
prior.

Key question: What should the parameters a,b be? We know
that

• In a gamma PDF with parameters a, b, the mean is a
b

and
the variance is a

b2

• Suppose we know that the mean and variance of λ from
prior research is 3 and 1.5

• Solve for a,b, which gives us the parameters we need for
the gamma prior on λ.

a

b
= 3 (30)

a

b2 = 1.5 (31)

Just solve for a and b (exercise).

Result: a = 6, b = 2.

The prior on λ is:

λ ∼ Gamma(a = 6, b = 2) (32)
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Cross-check using Monte Carlo simulations that the mean and
variance are as they should be:
lambda<-rgamma(10000,shape=6,rate=2)

round(mean(lambda),1)

## [1] 3
round(var(lambda),1)

## [1] 1.5

Given that

Posterior ∝ Likelihood Prior (33)

and given that the PDF we assume for the data is Poisson (n
independent data points x):

x =< x1, . . . , xn >

f(x | λ) =exp(−λ)λx1

x1!
× · · · × exp(−λ)λxn

xn!

=
n∏

i=1

exp(−λ)λxi

xi!

=exp(−nλ)λ
∑n

i
xi∏n

i=1 xi!

(34)

Computing the posterior is surprisingly easy now:

Posterior =
exp(−nλ)λ

∑n

i
xi∏n

i=1 xi!

 [
baλa−1 exp(−bλ)

Γ(a)

]
(35)

The terms x!, Γ(a), ba do not involve λ and make up the normal-
izing constants; we can drop these.

This gives us the posterior up to proportionality:
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Posterior ∝ exp(−nλ)λ
∑n

i
xiλa−1 exp(−bλ)

=λa−1+
∑n

i
xi exp(−λ(b + n))

(36)

Posterior ∝ exp(−nλ)λ
∑n

i
xiλa−1 exp(−bλ)

=λa−1+
∑n

i
xi exp(−λ(b + n))

(37)

• The Gamma distribution in general is Gamma(a, b) ∝
λa−1 exp(−λb).

• So it’s enough to state the above as a Gamma distribution
with some updated parameters a, b.

If we equate a∗ −1 = a−1+ ∑n
i xi and b∗ = b+n, we can rewrite

the above as:

λa∗−1 exp(−λb∗) (38)

• This means that a∗ = a + ∑n
i xi and b∗ = b + n.

• We can find a constant k such that the above is a proper
probability density function, i.e.:

k
∫ ∞

0
λa∗−1 exp(−λb∗) = 1 (39)

- Thus, the posterior has the form of a Gamma distribution
with parameters a∗ = a + ∑n

i xi, b∗ = b + n. Hence the Gamma
distribution is a conjugate prior for the Poisson.

Concrete example given data
• Suppose the regressive eye movements from one subject on

five words is: 2, 4, 3, 6, 1.
• The prior we chose was Gamma(a=6,b=2).
• ∑n

i xi = 16 and sample size n = 5.

It follows that the posterior is

Gamma(a∗ = a +
n∑
i

xi, b∗ = b + n) =Gamma(6 + 16, 2 + 5)

=Gamma(22, 7) (40)

• The mean of the posterior is a∗
b∗ = 22

7 = 3.14

• The variance is a∗
b∗2 = 22

72 = 0.45

• We saw two examples of conjugate analyses: the binomial-
beta and the Poisson-gamma.

• In each example, we derived the posterior given a likelihood
and a prior.
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The posterior’s mean is a weighted mean of the
MLE and the prior mean
We can express the posterior mean as a weighted sum of the prior
mean and the maximum likelihood estimate of λ.

The posterior mean is:

a∗
b∗

= a + ∑
xi

n + b
(41)

This can be rewritten as

a∗
b∗

= a + nx̄

n + b
(42)

Dividing both the numerator and denominator by b:

a∗
b∗

= (a + nx̄)/b

(n + b)/b
= a/b + nx̄/b

1 + n/b
(43)

Since a/b is the mean m of the prior, we can rewrite this as:

a/b + nx̄/b

1 + n/b
=

m + n
b
x̄

1 + n
b

(44)

We can rewrite this as:

m + n
b
x̄

1 + n
b

= m × 1
1 + n

b

+
n
b
x̄

1 + n
b

(45)

This is a weighted average: setting w1 = 1 and w2 = n
b
, we can

write the above as:

m
w1

w1 + w2
+ x̄

w2

w1 + w2
(46)

A n approaches infinity, the weight on the prior mean m will tend
towards 0, making the posterior mean approach the maximum
likelihood estimate of the sample.

In general, in a Bayesian analysis, as sample size increases, the
likelihood will dominate in determining the posterior mean.

Regarding variance, since the variance of the posterior is:

a∗
b∗2 = (a + nx̄)

(n + b)2 (47)

as n approaches infinity, the posterior variance will approach
zero: more data will reduce variance (uncertainty).
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Stepping back
• We saw two examples where we can do the computations

to derive the posterior using simple algebra.

• There are several other such simple cases.

• A big insight: the posterior mean is a compromise between
the prior mean and the sample mean.

• When data are sparse, the prior will dominate in determin-
ing the posterior mean.

• When a lot of data are available, the MLE will dominate
in determining the posterior mean.

• Given sparse data, informative priors based on expert knowl-
edge, existing data, or meta-analysis will play an important
role.

• In realistic data analysis settings, we can’t use these simple
conjugate analyses

• For such cases, we need to use MCMC (Markov chain Monte
Carlo) sampling techniques so that we can sample from the
posterior distributions of the parameters.

Some sampling approaches are:

• Gibbs sampling using inversion sampling
• Metropolis-Hastings
• Hamiltonian Monte Carlo

Youtube lecture: https://youtu.be/ymuLt6LBTwY
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