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Textbook

Introduction to Bayesian Data Analysis for Cog-
nitive Science

Nicenboim, Schad, Vasishth

« Online version: https://bruno.nicenboim.
me /bayescogsci /

« Source code: https://github.com/bnicenboi
m /bayescogsci

« Physical book: here

Be sure to read the textbook’s chapters
1-3 in addition to watching this lecture.

Linear modeling

Suppose y is a vector of continuous responses;
assume for now that the y are independent and
identically distributed:

y % Normal(p, o)
This is the simple linear model:
y = p+ € where € ~ Normal(0, o)

There are two parameters, u, o, so we need priors
on these. We expand on this simple model next.

The way we will conduct data analysis is as
follows:

« Given data, specify a likelihood func-
tion.

« Specify prior distributions for model
parameters.

« Evaluate whether model makes sense, us-
ing simulated data, prior predictive and
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posterior predictive checks, and (if you
want to claim a discovery) calibrating true
and false discovery rates.

« Using software, derive marginal poste-
rior distributions for parameters given
a likelihood function and prior density.
[.e., simulate parameters to get samples
from posterior distributions of pa-
rameters using some Markov Chain
Monte Carlo (MCMC) sampling
algorithm.

« Check that the model converged using
model convergence diagnostics,

« Summarize posterior distributions of
parameter samples and make your scientific
decision.

We will now work through some specific exam-
ples to illustrate how the data analysis process
works.

Example 1: A single subject pressing a
button repeatedly

As a first example, we will fit a simple linear
model to some reaction time data.

The data frame df spacebar contains data of a
subject pressing the space bar without reading
in a self-paced reading experiment.

Install the library

Install the library bcogsci. See:
https://github.com /bnicenboim /beogsci
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Load the data

library(bcogsci)
data("df spacebar")
head(df spacebar)

## # A tibble: 6 x 2

H# t trial
H# <int> <int>
# 1 141 1
H# 2 138 2
## 3 128 3
## 4 132 4
## 5 126 5
## 6 134 6

Visualizing the data

It is a good idea to look at the distribution of
the data before doing anything else. See Figure
1.

plot (density(df spacebar$t),
main="Button-press data'",
xlab="Tapping time")

The data looks a bit skewed, but we ignore this
for the moment.

Define the likelihood function

Let’s model the data with the following assump-
tions:

 There is a true underlying time, u, that the
participant needs to press the space-bar.
« There is some noise around pu.
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Figure 1: Visualizing the data.

« The noise is normally distributed (this as-
sumption is questionable given the skew but;
we fix this assumption later).

This means that the likelihood for each observa-
tion n will be:

tn ~ Normal(u, o) (1)

wheren =1... V.

This is just the simple linear model:

t = p+ € where € ~ Normal(0,0)  (2)

Define the priors for the parameters

We are going to use the following priors for the
two parameters in this model:

p ~ Normal(0,2000)
o ~ Normal(0,500) truncated so that o > 0

(3)



In order to decide on a prior for the parameters,
always visualize them first. See the Figure below.
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Figure 2: Visualizing the priors for example 1.

Prior predictive distribution

With these priors, we are going to generate some-
thing called the prior predictive distribu-
tion. This helps us check whether the priors
make sense.

Formally, we want to know the density f(-) of
data points ¢4, ..., ,, given a vector of priors ©.
In our example, © = (1, o). The prior predictive
density is:

Ftr, ot = [ f(t) - f(ta) - f(£a) f(©) dO
(4)

In essence, we integrate out the parameters. Here
is one way to do it in R:

« Take one sample from each of the priors
« Generate nobs data points using those sam-
ples

This would give us a matrix containing nsim *

nobs generated data. We can then plot the prior
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predictive densities generated.

## needed for half-normal distribution
library(extraDistr)

## number of simulations

nsim<-1000

## number of observations generated

## each time:

nobs<-100
y<-matrix(rep(NA,nsim*nobs),ncol = nobs)
mu<-rnorm(nsim,mean=0,sd=2000)

## truncated normal, cut off at O:
sigma<-rtnorm(nsim,mean=0,sd=500,a=0)

for(i in 1:nsim){
y[i,]<-rnorm(nobs,mean=mul[i] ,sd=sigmal[i])
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We can try to redefine the prior for u to have
only positive values, and then check again. We
still get some negative values, but that is because
we are assuming that



y ~ Normal(p, o)

which will have negative values for small p and
large o.

y<-matrix(rep(NA,nsim*nobs),ncol = nobs)
mu<-rtnorm(nsim,mean=0,sd=2000,a=0)

for(i in 1:nsim){
y[i,]<-rnorm(nobs,mean=mu[i],sd=sigmal[i])
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Generating prior predictive distributions using
Stan

We can generate a prior predictive distribution
using Stan as follows.

First, we define a Stan model that defines the
priors and defines how the data are to be gener-
ated.

Documentation on Stan is available at mec-stan
.0rg.


mc-stan.org
mc-stan.org

priorpred<-"data {
int N;

¥

parameters {

real<lower=0> mu;

real<lower=0> sigma,

+
model {
mu ~ normal (0,2000) ;
sigma ~ normal(0,500) ;
+

generated quantities {
vector [N] y_sim;
for(i in 1:N) {
y_sim[i] = normal rng(mu,sigma);

}}Il
Load RStan and brms.

## load rstan
library(rstan)
options(mc.cores = parallel::detectCores())
library (brms)

Then we generate the data:

## generate 100 data-points
dat<-1ist (N=100)

## fit model:
mlpriorpred<-stan(model code=priorpred,
data=dat,
chains = 4,
warmup = 1000,
iter = 2000)



## extract and plot one of the data-sets:
y_sim<-extract(mlpriorpred,pars="y sim")

str(y_sim)

## List of 1

## $ y_sim: num [1:4000, 1:100] 3167 3058 534 2178 711
## ..— attr(x, "dimnames")=List of 2

#it .. ..$ iterations: NULL

## ... % : NULL

## plot 100th simulated data set:
hist(y_sim$y_sim[100,],
main="Prior predictive distribution",
xlab="y sim",freq=FALSE)

Prior predictive distribution
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Fit the model in Stan

Having satisfied ourselves that the priors mostly
make sense (do they, though?), we now fit the
model to simulated data generated from known
parameter values. The goal here is to ensure
that the model recovers the true underlying pa-
rameters.

Next, we write the Stan model, adding a likeli-
hood in the model block:

ml<-"data {
int N;
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real y[N]; // data
+
parameters {
real<lower=0> mu;
real<lower=0> sigma,
+
model {
mu ~ normal (0,2000);
sigma ~ normal(0,500);
y ~ normal (mu,sigma) ;
+
generated quantities {
vector [N] y_sim;
for(i in 1:N) {
y_sim[i] = normal rng(mu,sigma);

+}

Then generate simulated data with known pa-
rameter values (we decide what these are):

set.seed(123)

N <- 500

true mu <- 400

true_sigma <- 125

y <- rnorm(N, true_mu, true_sigma)

y <- round(y)

sim_data <- data.frame(y=y)
dat<-list (y=y,N=N)
Finally, we fit the model:

## fit model:
mirstan<-stan(model code=ml,
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data=dat,
chains = 4,
iter = 2000)

## extract posteriors:
posteriors<-extract(mlrstan,
pars=c("mu","sigma"))
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Figure 3: Posteriors from fake data, model m1. Vertical lines
show the true values of the parameters.

Posterior predictive checks

Once we have the posterior distribution f(© |
y), we can derive the predictions based on this
posterior distribution:

PWpred | ) = [ DWprea: © | ) dO = [ p(yprea | ©,y)p(O | y) dO
(5)
Assuming that past and future observations are

conditionally independent given ©, i.e., p(Ypred |
O, Yy) = P(Yprea | ©), We can write:

PWpred | Y) = [ P(Yprea | O)p(© | y)dO  (6)
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Note that we are conditioning y,,.q only on y, we
do not condition on what we don’t know (©); we
integrate out the unknown parameters.

This posterior predictive distribution is different
from the frequentist approach, which gives only a
predictive distribution of y,,..q given our estimate
of 6 (a point value).

In the Stan code above, we have already gener-
ated the posterior predictive distribution, in the
generated quantities block.

Implementing the model in brms

This model is expressed in brms in the following
way. First, define the priors:

priors <- c(set_prior("normal(0, 2000)",
class = "Intercept"),
set_prior("normal(0, 500)",
class = "sigma"))

Then, define the generative process assumed:

mlbrms<-brm(t~1,df spacebar,prior = priors,
iter = 2000,
warmup = 1000,
chains = 4,
family = gaussian(),
control = list(adapt delta = 0.99))

Summarizing the posteriors, and convergence diagnostics

A graphical summary of posterior distributions
of model m1 is shown below:

The trace plots below show how well the four
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sigma

An alternative way to plot is shown below.
Fitting the brms model on simulated data
ml fakebrms<-brm(y~1,sim_data,prior = priors,

iter = 2000, chains = 4,family = gaussian(),
control = list(adapt_delta = 0.99))
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Figure 6: Posterior distributions and trace plots in model m1.

Summarizing the posterior distribution

We are assuming that there’s a true underlying
time it takes to press the space bar, u, and there
is normally distributed noise with a Normal(0,0)
truncated at 0 that generates the different but-
ton tapping times. All this is encoded in our
likelihood by assuming that the tapping times
are normally distributed with an unknown true
mean g (and an unknown standard deviation

o).

The objective of the Bayesian model is to learn
about the plausible values of y, or in other words,
to get a distribution that encodes what we know
about the true mean of the distribution of RS,
and about the true standard deviation, o, of the
distribution of RTk.

Our model allows us to answer questions such
as:

What is the probability that the underlying value
of the mindless press of the space bar would be
over, say 170 ms?**
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As an example, consider this model that we ran
above.

priors <- c(set_prior("normal(0, 2000)",
class = "Intercept"),
set_prior("normal (0, 500)",
class = "sigma"))

mibrms<-brm(t~1,df spacebar,prior = priors,
iter = 2000,
warmup = 1000,
chains = 4,
family = gaussian(),
control = list(adapt_delta

0.99))

Now compute the posterior probability
Prob(p > 170):

mu_post<-posterior_samples(mlbrms,
variable=c("b Intercept"))$b_Int
mean (mu_post>170)

## [1] 0.14875

The credible interval

The 95% credible interval can be extracted for
1 as follows:

posterior_interval (mlbrms,
variable=c("b_Intercept"))

## 2.5% 97.5%
## b_Intercept 166.0053 171.3141

posterior_summary(mlbrms,
variable=c("b_Intercept"))

#it Estimate Est.Error Q2.5 Q97.5
## b_Intercept 168.6377 1.335129 166.0053 171.3141

16



This type of interval is also known as a credible
interval.

A credible interval demarcates the range within
which we can be certain with a certain proba-
bility that the “true value” of a parameter lies
given the data and the model.

Aside: This is very different from the frequen-
tist confidence interval, which has the following
meaning: If you were (counterfactually) to run
the same experiment over and over again, say
100 times, then 95% of the 100 confidence in-
tervals you would generate would contain the
true value of the parameter. The frequentist
confidence interval does not tell you the range
over which you can be 95% certain that the true
value of the parameter lies: the parameter is not
a random variable but rather is a point value, so
one cannot make probability statements about
1t.

The percentile interval is a type of credible in-
terval (the most common one), where we assign
equal probability mass to each tail.

We generally report 95% credible intervals. But
we can extract any interval; a 73% interval, for
example, leaves 13.5% of the probability mass
on each tail, and we can calculate it like this:

round(quantile(mu_post,
prob=c(0.135,0.865)))

## 13.5% 86.5%
## 167 170
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The influence of priors and sensitivity analysis

p ~ Uni form(0,5000)

o ~ Uniform(0,500) (7)

priors <- c(set_prior("uniform(0, 5000)",

class = "Intercept"

1b = 0,

ub = 5000),
set_prior("uniform(0, 500)",

class = "sigma",

1b=0,

ub=500) )

m2<-brm(t~1,df spacebar,prior = priors,
iter = 2000, chains = 4,
family = gaussian(),

b

control = list(adapt_delta = 0.99))

For looking at the results:

short_summary (m2)

## ...

## Population-Level Effects:

#it Estimate Est.Error 1-95J, CI u-95% CI Rhat Bulk_ESS Tail_ ESS
## Intercept 168.64 1.32 166.02 171.23 1.00 2197 1855
##

## Family Specific Parameters:

#i# Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ ESS

## sigma 24.99 0.93 23.28 26.83 1.00 1959 1993

##

## ...

In general, we don’t want our priors to have too
much influence on our posterior.

This is unless we have wvery good reasons for
having informative priors, such as a very small
sample and/or a lot of prior information; an ex-
ample would be if we have data from an impaired
population, which makes it hard to increase our
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sample size.

We usually center the priors on 0 and we let the
likelihood dominate in determining the posterior.

This type of prior is sometimes called a weakly
informative prior. Notice that a uniform prior
is not a weakly informative prior, it assumes that
every value is equally likely, zero is as likely as

5000.

You should always do a sensitivity analysis to
check how influential the prior is: try differ-
ent priors and verify that the posterior doesn’t
change drastically.

Example 2: Investigating adaptation
effects

More realistically, we might have run the small
experiment to find out whether the participant
tended to speedup (practice effect) or slowdown
(fatigue effect) while pressing the space bar.

Preprocessing the data

« We need to have data about the number
of times the space bar was pressed for each
observation, and add it to our list.

« It’s a good idea to center the number of
presses (a covariate) to have a clearer inter-
pretation of the intercept.

« In general, centering predictors is always a
good idea, for interpretability and for com-
putational reasons.
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« See the contrast coding chapters in the book
for details on this point.

df spacebar <- df spacebar 7>/
mutate(c _trial = trial - mean(trial))

Probability model

Our model changes, because we have a new pa-
rameter.

tn ~ Normal(a + c_trial, - B,0)  (8)

wheren=1...N.

We could use the following priors.

a ~ Normal(0,2000)
B ~ Normal(0,500)
o ~ Normal(0,500) truncated so that o > 0

(9)

We are basically fitting a linear model, a repre-
sents the intercept (namely, the grand mean of
the RTs), and ( represents the slope.

What information are the priors encoding?
Do the priors make sense?

We'll write this in brms as follows.

priors <- c(set_prior("normal(0, 2000)",

class = "Intercept"),

set_prior("normal(0, 500)",
class = "b",
coef="c _trial"),
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set_prior("normal(0, 500)",
class = "sigma"))

m2<-brm(t~1+c_trial,df spacebar,
prior = priors,
iter = 2000, chains = 4,family = gaussian(),
control = list(adapt_delta = 0.99))

Posteriors

library(bayesplot)
#bayesplot: :theme_default ()
stanplot(m2,type="hist")

b_Intercept b_c_trial sigma

164 166 168 170 172 174 0.06 0.08 0.10 0.12 22 24 26

We'll need to examine what happens with (.
The summary gives us the relevant information.

m2_post_samp_b <- posterior_samples(m2, ""b")
str(m2_post_samp_b)

## 'data.frame': 4000 obs. of 2 variables:
## ¢ b_Intercept: num 169 169 170 168 171 ...
## $ b _c trial : num 0.0737 0.0979 0.0995 0.0994 0.0736 ...

beta_samples <- m2_post_samp_b$b_c_trial

beta_mean<-mean(beta_samples)

quantiles_beta <- quantile(beta_samples,
prob=c(0.025,0.975))

beta_low<-quantiles_betal[1]

beta_high<-quantiles_betal[2]

Examine what happens with 5. The summary
gives us the relevant information:
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m2_post_samp_b2 <- posterior_summary(m2, "“b")
round (m2_post_samp_b2,2)

## Estimate Est.Error Q2.5 Q97.5
## b_Intercept 168.66 1.25 166.17 171.07
## b_c_trial 0.09 0.01 0.07 0.11

Let’s say we know that our model is working as
expected, since we already used simulated data
to test the recovery of the parameters.

Posterior predictive checks

To do posterior predictive checks for our last
example, using brms, we need to do:

pp_check (m2,nsamples=100)+
theme (text = element_text(size=16),
legend.text=element_text(size=16))

Yrep

100 200 300 400

Figure 7: Posterior predictive check of model m2.

Using the log-normal likelihood

mu <- 6
sigma <- 0.5
N <- 100000

# Generate N random samples
## from a log-normal distribution
sl <- rlnorm(N, mu, sigma)
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lognormal plot <- ggplot(data.frame(samples=sl),
aes(sl)) + geom_histogram() +
ggtitle("Log-normal distribution\n") +
ylim(0,25000) + x1im(0,2000) + theme_bw()
# Generate N random samples
# from a mormal distribution,
# and then exponentiate them
sn <- exp(rnorm(N, mu, sigma))
normalplot <- ggplot(data.frame(samples=sn),
aes(sn)) + geom_histogram() +
ggtitle ("Exponentiated samples of
\n a normal distribution") +
ylim(0,25000) + x1im(0,2000) + theme_bw()

plot (lognormal plot)
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Figure 8: The log-normal distribution.

plot(normalplot)
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a normal distribution
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Figure 9: Exponentiated samples from a log-normal distribution.
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Re-fit the model assuming a log-normal likeli-
hood

If we assume that RTs are log-normally dis-
tributed, we’ll need to change our model:

tn, ~ LogNormal(a + ¢_trial, - B,0) (10)

wheren=1...N

But now the scale of our priors needs to change!
They are no longer in milliseconds.

a ~ Normal(0,10)
B ~ Normal(0,1)
o ~ Normal(0,2) truncated so that o > 0
(11)
priors_log <- c(set_prior("normal(0, 10)",
class = "Intercept"),
set_prior("normal(0, 1)",
class = "b",
coef="c _trial"),
set_prior("normal(0, 2)",
class = "sigma"))

m2 logn<-brm(t~1+ c_trial,df spacebar,
prior = priors_log,
iter = 2000, chains = 4,family = lognormal(),
control = list(adapt_delta = 0.99,
max_treedepth=15))

## Compiling Stan program. ..
## Start sampling
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Summarizing the posterior and inference

Next, we turn to the question of what we can
report as our results, and what we can conclude
from the data.

« We can summarize the posterior and do
inference as discussed in Example 1.

o If we want to talk about the effect estimated
by the model, we summarize the posterior
of 5 in the following way:

A

« B =10.0873272, 95% Crl = [0.06676, 0.1077809],
P(3>0) ~ 1

Posterior predictive checks and distribution of
summary statistics

We can now verify whether our predicted
datasets look more similar to the real dataset.
See rgw figure below.

pp_check(m2_logn, nsamples = 100)+
theme (text = element_text(size=16),
legend.text=element_text(size=16))

m2 logn<-brm(t~1+c_trial,df spacebar,
prior = priors_log,
iter = 2000, chains = 4,
family = lognormal(),
control = list(adapt delta = 0.99,
max_treedepth=15))
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yrep
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Figure 10: Posterior predictive check.

General workflow

This is the general workflow that we suggest for
a Bayesian model.

1. Define the full probability model:
a. Decide on the likelihood.
b. Decide on the priors.
c. Write the brms or Stan model.
2. Do prior predictive checks to determine if
priors make sense.

3. Check model using simulated data:
a. Simulate data with known values for the
parameters.
b. Fit the model and do MCMC diagnos-
tics.
c. Verify that it recovers the parameters
from simulated data.
4. Fit the model with real data and do MCMC
diagnostics.
5. Evaluate the model’s fit (e.g., posterior
predictive checks, distribution of summary
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statistics). This may send you back to 1.
6. Inference/prediction/decisions.
7. Conduct model comparison if there’s an al-
ternative model (to be discussed later).
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