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Preface

This book is intended to be a relatively complete introduction
to the application of linear mixed models in areas related to lin-
guistics and psychology; throughout, we use the programming lan-
guage R. Our target audience is cognitive scientists (e.g., linguists
and psychologists) who carry out behavioral experiments, and who
are interested in learning the foundational ideas behind modern
statistical methodology from the ground up and in a principled
manner.

Many excellent introductory textbooks already exist that discuss
data analysis in great detail. Our book is different from existing
books in two respects. First, our main focus is on showing how to
analyze data from planned experiments involving repeated mea-
sures; this type of experimental data involves complexities that
are distinct from the problems one encounters when analyzing ob-
servational data. We provide many examples of data-sets involving
eyetracking (visual world and reading), self-paced reading, event-
related potentials, reaction time, acceptability rating judgements,
speeded grammaticality judgements, and question-response accu-
racies. Second, from the very outset, we stress a particular work-
flow that has as its centerpiece simulating data; we aim to teach a
philosophy that involves thinking hard about the assumed under-
lying generative process, even before the data are collected.
The data analysis approach that we hope to teach through this
book involves a cycle of experiment design analysis and model
validation using simulated data.

vii



viii Preface

0.1 Prerequisites
This book assumes high school arithmetic and algebra. We also
expect that the reader already knows basic constructs in the pro-
gramming language R (R Core Team, 2019), such as writing for-
loops. For newcomers to R, we provide a quick introduction in the
appendix that covers all the constructs used in the book. For those
lacking background in R, there are many good online resources on
R that they can consult as needed. Examples are: R for data sci-
ence1, and Efficient R programming2.

 

 

provide comprehensive book recommendations

0.2 How to read this book
The chapters in this book are intended to be read in sequence,
but during the first pass through the book, the reader should feel
free to skip the sections marked with an asterisk. These sections
provide a more formal development that will be useful when the
reader transitions to more advanced textbooks like Gelman et al.
(2014).

to-do: add a Mackay type chapter ordering for different scenarios.
1https://r4ds.had.co.nz/
2https://csgillespie.github.io/efficientR/

https://r4ds.had.co.nz/
https://csgillespie.github.io/efficientR/


Online materials ix

0.3 Online materials
The entire book, including all data and source code, is available on-
line from https://github.com/vasishth/Fre q_CogSci3. Solutions
to the exercises will be provided (to-do).

0.4 Software needed
Before you start, please install

• R4 (and RStudio5 or any other IDE)
• The R packages MASS, dplyr, purrr, readr, extraDistr,

ggplot2:
– They can be installed in the usual way:

install.packages(c("MASS", "dplyr", "purrr",
"readr", "extraDistr", "ggplot2")).

In every R session, we’ll need to set a seed (this ensures that the
random numbers are always the same).

0.5 Acknowledgements
We are grateful to the many generations of students at the Uni-
versity of Potsdam, various summer schools at ESSLLI, the LOT
winter school, other short courses we have taught at various insti-
tutions, and the annual summer school on Statistical Methods for
Linguistics and Psychology (SMLP) at the University of Potsdam.
The participants in these courses helped us considerably in improv-

3https://github.com/vasishth/Freq_CogSci
4https://cran.r-project.org/
5https://www.rstudio.com/

https://github.com/vasishth/Freq_CogSci
https://cran.r-project.org/
https://www.rstudio.com/
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ing the material presented here. We are also grateful to members
of Vasishth lab for comments on earlier drafts of this book.

Shravan Vasishth, Daniel Schad, Audrey Bürki, Reinhold Kliegl,
Potsdam, Germany
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Part I

Foundational ideas





1
Some important facts about distributions

In linguistics and psychology, typical data-sets involve either dis-
crete dependent measures such as acceptability ratings on a Likert
scale (for example, ranging from 1 to 7), and binary grammatical-
ity judgements, or continuous dependent measures such as reading
times or reaction times in milliseconds and EEG signals in micro-
volts. Whenever we fit a model using one of these types of depen-
dent measures, we make some assumptions about how these mea-
surements were generated. In particular, we usually assume that
our observed measurements are coming from a particular proba-
bility mass function (when the data are discrete in nature) prob-
ability density function (when the data are continuous). Behind
these PMFs and PDFs lies the concept of a random variable; as
will become apparent in this chapter, it is extremely useful to be
able to think about data in terms of the random variable assumed.
We consider the two cases, discrete and continuous, separately.

1.1 Discrete random variables: An example using the Bi-
nomial distribution

Imagine that our data come from a grammaticality judgement task,
and that the responses from participants are a sequence of 1’s
and 0’s, where 1 represents the judgment “grammatical”, and 0
represents the judgement “ungrammatical”. Assume also that each
response, coded as 1 or 0, is generated independently from the
others. We can simulate such a sequence of 1s and 0s in R. Here
is a case where we run the same experiment 20 times (the sample
size is 10 each time).

3



4 1 Some important facts about distributions

## [1] 7 7 4 7 6 5 6 3 6 6 5 6 7 4 5 7 8 3 5 5

The number of successes in each of the 20 simulated experiments
above is being generated by a discrete random variable 𝑌 with a
probability distribution 𝑝(𝑌 ) called the Binomial distribution.1

For discrete random variable, the probability distribution 𝑝(𝑌 ) is
called a probability mass function (PMF). The PMF defines
the probability of each possible outcome. In the above example,
with 𝑛 = 10 trials, there are 11 possible outcomes: 0, … , 10 suc-
cesses. Which of these outcomes is most probable depends on a
parameter in the Binomial distribution that represents the proba-
bility of success. We will call this parameter 𝜃. The left-hand side
plot in Figure 1.1 shows an example of a Binomial PMF with 10
trials and the parameter 𝜃 with value 0.5. Setting 𝜃 to 0.5 leads to
a PMF where the most probable outcome is 5 successes out of 10.
If we had set 𝜃 to, say 0.1, then the most probable outcome would
be 1 success out of 10; and if we had set 𝜃 to 0.9, then the most
probable outcome would be 9 successes out of 10.
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FIGURE 1.1: Probability mass functions of a binomial distribu-
tion assuming 10 trials, with 50%, 10%, and 90% probability of
success.

 

 

to-do bar or line graphs above, instead of points

1When an experiment consists of only a single trial (i.e., we can have a total
number of only 0 or 1 successes), 𝑝(𝑌 ) is called a Bernoulli distribution.



1.1 Discrete random variables: An example using the Binomial distribution 5

The probability mass function for the binomial is written as fol-
lows.

Binomial(𝑘|𝑛, 𝜃) = (𝑛
𝑘)𝜃𝑘(1 − 𝜃)𝑛−𝑘 (1.1)

Here, 𝑛 represents the total number of trials, 𝑘 the number of suc-
cesses, and 𝜃 the probability of success. The term (𝑛

𝑘), pronounced
n-choose-k, represents the number of ways in which one can choose
𝑘 successes out of 𝑛 trials. For example, 1 success out of 10 can
occur in 10 possible ways: the very first trial could be a 1, the
secone trial could be a 1, etc. The term (𝑛

𝑘) expands to 𝑛!
𝑘!(𝑛−𝑘)! . In

R, it is computed using the function choose(n,k), with 𝑛 and 𝑘
representing positive integer values.

1.1.1 The mean and variance of the Binomial distribution

It is possible to analytically compute the mean and variance of
the PMF associated with the Binomial random variable 𝑌 . With-
out getting into the details of how these are derived mathemati-
cally, we just state here that the mean of 𝑌 (also called the expec-
tation, conventionally written 𝐸[𝑌 ]) and variance of 𝑌 (written
𝑉 𝑎𝑟(𝑌 )) of a Binomial distribution with parameter 𝜃 and 𝑛 trials
are 𝐸[𝑌 ] = 𝑛𝜃 and 𝑉 𝑎𝑟(𝑌 ) = 𝑛𝜃(1 − 𝜃), respectively.
Of course, we always know 𝑛 (because we decide on the number of
trials ourselves), but in real experimental situations we never know
the true value of 𝜃. But 𝜃 can be estimated from the data. From the
observed data, we can compute the estimate of 𝜃, ̂𝜃 = 𝑘/𝑛. The
quantity ̂𝜃 is the observed proportion of successes, and is called
the maximum likelihood estimate of the true (but unknown
mean). Once we have estimated 𝜃 in this way, we can also obtain an
estimate (also a maximum likelihood estimate) of the variance by
computing 𝑛 ̂𝜃(1 − ̂𝜃). These estimates are then used for statistical
inference.

What does the term “maximum likelihood estimate” mean? The
term likelihood refers to the value of the Binomial distribution
function for a particular value of 𝜃, once we have observed some
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data. For example, suppose you record 𝑛 = 10 trials, and observe
𝑘 = 7 successes. What is the probability of observing 7 successes
out of 10? We need the binomial distribution to compute this value:

Binomial(𝑘 = 7|𝑛 = 10, 𝜃) = (10
7 )𝜃7(1 − 𝜃)10−7 (1.2)

Once we have observed the data, both 𝑛 and 𝑘 are fixed. The only
variable in the above equation now is 𝜃: the above function is now
only dependent on the value of 𝜃. When the data are fixed, the
probability mass function is only dependent on the value of the
parameter 𝜃, and is called a likelihood function. It is therefore
often expressed as a function of 𝜃:
𝑝(𝑦|𝜃) = 𝑝(𝑘 = 7, 𝑛 = 10|𝜃) = ℒ(𝜃)
The vertical bar notation above should be read as saying that,
given some data 𝑦 (which in the binomial case will be 𝑘 “successes”
in 𝑛 trials), the function returns a value for different values of 𝜃.
If we now plot this function for all possible values of 𝜃, we get the
plot shown in Figure 1.2.

 

 

DS comment: do we want to show the code for computing all
likelihood values? (maybe this comes later?)

What is important about this plot is that it shows that, given the
data, the maximum point is at the point 0.7, which corresponds to
the estimated mean using the formula shown above: 𝑘/𝑛 = 7/10.
Thus, the maximum likelihood estimate (MLE) gives us the most
likely value that the parameter 𝜃 given the data. It is crucial to
note here that the phrase “most likely” here does not mean that
the MLE from a particular sample of data invariably gives us an
accurate estimate of 𝜃. For example, if we run our experiment for
10 trials and get 1 success out of 10, the MLE is 0.10. We could
have happened to observe only one success out of ten even if the
true 𝜃 were 0.5. The MLE would however give an accurate estimate
of the true parameter as 𝑛 approaches infinity.
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FIGURE 1.2: The likelihood function for 7 successes out of 10.

1.1.2 What information does a probability distribution pro-
vide?

What good is a probability mass function? We consider this ques-
tion next.

1.1.2.1 Compute the probability of a particular outcome (discrete
case only)

The Binomial distribution shown in Figure 1.1 already shows the
probability of each possible outcome under a different value for
𝜃. In R, there is a built-in function that allows us to calculate
the probability of 𝑘 successes out of 𝑛, given a particular value
of 𝑘 (this number constitutes our data), the number of trials 𝑛,
and given a particular value of 𝜃; this is the dbinom function. For
example, the probability of 5 successes out of 10 when 𝜃 is 0.5 is:

dbinom(5, size = 10, prob = 0.5)

## [1] 0.2461
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The probabilities of success when 𝜃 is 0.1 or 0.9 can be computed
by replacing 0.5 above by each of these probabilities. One can just
do this by giving dbinom a vector of probabilities:

dbinom(5, size = 10, prob = c(0.1, 0.9))

## [1] 0.001488 0.001488

1.1.2.2 Compute the cumulative probability of k or less (more)
than k successes

Using the dbinom function, we can compute the cumulative prob-
ability of obtaining 1 or less, 2 or less successes etc. This is done
through a simple summation procedure:

## the cumulative probability of obtaining 0, 1, or
## 2 successes out of 10, with theta=0.5:
dbinom(0, size = 10, prob = 0.5) + dbinom(1, size = 10,

prob = 0.5) + dbinom(2, size = 10, prob = 0.5)

## [1] 0.05469

Mathematically, we could write the above summation as:

2
∑
𝑘=0

(𝑛
𝑘)𝜃𝑘(1 − 𝜃)𝑛−𝑘 (1.3)

An alternative to the cumbersome addition in the R code above
is this more compact statement, which closely mimics the above
mathematical expression:

sum(dbinom(0:2, size = 10, prob = 0.5))

## [1] 0.05469

R has a built-in function called pbinom that does this summation
for us. If we want to know the probability of 2 or less successes as
in the above example, we can write:
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pbinom(2, size = 10, prob = 0.5, lower.tail = TRUE)

## [1] 0.05469

The specification lower.tail=TRUE ensures that the summation
goes from 2 to numbers smaller than 2 (which lie in the lower tail
of the distribution in Figure 1.1). If we wanted to know what the
probability is of obtaining 2 or more successes out of 10, we can
set lower.tail to FALSE:

pbinom(2, size = 10, prob = 0.5, lower.tail = FALSE)

## [1] 0.9453

The cumulative distribution function or CDF can be plotted by
computing the cumulative probabilities for any value 𝑘 or less than
𝑘, where 𝑘 ranges from 0 to 10 in our running example. The CDF
is shown in Figure 1.3.

1.1.2.3 Compute the inverse of the cumulative distribution func-
tion (the quantile function)

We can also find out the value of the variable 𝑘 (the quantile) such
that the probability of obtaining 𝑘 or less than 𝑘 successes is some
specific probability value 𝑝. If we switch the x and y axes of Figure
1.3, we obtain another very useful function, the inverse CDF.

The inverse of the CDF (known as the quantile function in R
because it returns the quantile, the value k) is available in R as
the function qbinom. The usage is as follows: to find out what the
value 𝑘 of the outcome is such that the probability of obtaining 𝑘
or less successes is 0.37, type:

qbinom(0.37, size = 10, prob = 0.5)

## [1] 4
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FIGURE 1.3: The cumulative distribution function for a bino-
mial distribution assuming 10 trials, with 50% probability of suc-
cess.

1.1.2.4 Generate random data from a Binomial(𝑛, 𝜃) distribution

We can generate random simulated data from a Binomial distri-
bution by specifying the number of trials and the probability of
success 𝜃. In R, we do this as follows:

rbinom(10, size = 1, prob = 0.5)

## [1] 1 0 1 1 0 1 0 1 0 1

The above code generates a sequences of 1’s and 0’s. Repeatedly
run the above code; you will get different sequences each time.
For each generated sequence, one can calculate the number of suc-
cesses by just summing up the vector, or computing its mean and
multiplying by the number of trials, here 10:
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y <- rbinom(10, size = 1, prob = 0.5)
mean(y) * 10

## [1] 6

sum(y)

## [1] 6

1.2 Continuous random variables: An example using the
Normal distribution

We will now revisit the idea of a random variable using a contin-
uous distribution. Imagine that you have a vector of reading time
data 𝑦 measured in milliseconds and coming from a Normal dis-
tribution. The probability density function (PDF) of the Normal
distribution is defined as follows:

𝑁𝑜𝑟𝑚𝑎𝑙(𝑦|𝜇, 𝜎) = 𝑓(𝑦) = 1√
2𝜋𝜎2 exp(−(𝑦 − 𝜇)2

2𝜎2 ) (1.4)

Here, 𝜇 is the mean, and 𝜎 is the standard deviation of the Normal
distribution that the reading times have been sampled from.

We can visualize the Normal distribution for particular values of
𝜇 and 𝜎 as a PDF (using dnorm), a CDF (using pnorm), and the
inverse CDF (using qnorm). See Figure 1.4.

In the figure, the PDF gives us the density for each possible value
of our data 𝑦; the CDF tells us the probability of observing a value
like y or some value less than that (written: 𝑃(𝑌 < 𝑦)); and the
inverse CDF gives us the quantile 𝑦 such that 𝑃(𝑌 < 𝑦) is some
specific value between 0 and 1. These are three different ways of
looking at the same information.
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FIGURE 1.4: The PDF, CDF, and inverse CDF for the
𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎 = 1).

One important fact about the normal distribution is that 95% of
the probability mass is covered by approximately plus/minus 1.96
times the standard deviation about the mean. Thus, the range
𝜇 ± 1.96 × 𝜎 will cover approximately 95% of the area under the
curve. We will approximate this by talking about 𝜇 ± 2 × 𝜎.
As in the discrete example, the PDF, CDF, and inverse of the CDF
allow us to ask questions like:

• What is the probability of observing values between
𝑎 and 𝑏 from a Normal distribution with mean 𝜇 and
standard deviation 𝜎? We can compute the probability of
the random variable lying between 1 and minus infinity:

pnorm(1, mean = 0, sd = 1) - pnorm(-Inf, mean = 0,
sd = 1)

## [1] 0.8413
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Notice here that the probability of any point value in a PDF is
always 0. This is because the probability in a continuous probabil-
ity distribution is the area under the curve, and the area at any
point on the x-axis is always 0. The implication here is that we
can only ask about probabilities between two different points; e.g.,
the probability that 𝑌 lies between 𝑎 and 𝑏, or 𝑃(𝑎 < 𝑌 < 𝑏).
Also, notice that 𝑃(𝑎 < 𝑌 < 𝑏) and 𝑃(𝑎 ≤ 𝑌 ≤ 𝑏) will be the
same probability, because of the fact that 𝑃(𝑌 = 𝑎) or 𝑃(𝑌 = 𝑏)
both equal 0.

• What is the quantile 𝑞 such that the probability is 𝑝
of observing that value 𝑞 or something less (or more)
than it? For example, we can work out the quantile 𝑞 such
that the probability of observing 𝑞 or something less than it is
0.975, in the Normal(500,100) distribution. Formally, we would
write this as 𝑃(𝑌 < 𝑎).

qnorm(0.975, mean = 500, sd = 100)

## [1] 696

The above output says that the probability that the random vari-
able is less than 𝑞 = 695 is 97.5%.
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• Generating simulated data. Given a vector of 𝑛 inde-
pendent and identically distributed data 𝑦, i.e., given that
each data point is being generated independently from 𝑌 ∼
𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎) for some values of the parameters, the maximum
likelihood estimates for the expectation and variance are

̄𝑦 = ∑𝑛
𝑖=1 𝑦𝑖
𝑛 (1.5)

𝑉 𝑎𝑟(𝑦) = ∑𝑛
𝑖=1(𝑦𝑖 − ̄𝑦)2

𝑛 (1.6)

For example, you could generate 10 data points using the rnorm
function, and then compute the mean and variance from the sim-
ulated data:

y <- rnorm(10, mean = 500, sd = 100)
mean(y)

## [1] 482.2

var(y)

## [1] 13365

Again, depending on the sample size, the sample mean and sam-
ple variance may or may not be close to the true values of the
respective parameters, despite the fact that these are maximum
likelihood estimates.

One other important detail about probability distributions is that
one can have a joint distribution defined for more than one random
variable. We consider this situation next, considering the continu-
ous case only.
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1.3 Bivariate and multivariate distributions
So far, we have only discussed univariate distributions. It is also
possible to specify distributions with two or more dimensions.

1.3.1 Example 1: Discrete bivariate distributions

Starting with the discrete case, consider the discrete bivariate dis-
tribution shown below. These are data from an experiment where,
inter alia, in each trial a Likert acceptability rating and a question-
response accuracy were recorded (the data are from a study by
Laurinavichyute (2020), used with permission here).

This figure shows the joint probability mass function of two ran-
dom variables X and Y. The random variable X consists of 7 pos-
sible values (this is the 1-7 Likert response scale), and the random
variable Y is question-response accuracies, with 0 representing in-
correct responses, and 1 representing correct responses.

One can also display the figure as a table.

probs <- attr(f, "p")
t(probs)

## [,1] [,2] [,3] [,4] [,5] [,6]
## 0 0.01792 0.02328 0.04004 0.04306 0.06331 0.04888
## 1 0.03119 0.05331 0.08566 0.09637 0.14688 0.15317
## [,7]
## 0 0.05493
## 1 0.14199

For each possible value of X and Y, we have a joint probability.
Given such a bivariate distribution, there are two useful quantities
we can compute: the marginal distributions (𝑝𝑋 and 𝑝𝑌 ), and the
conditional distributions (𝑝𝑋|𝑌 and 𝑝𝑌 |𝑋).
The table below shows the joint probability mass function
𝑝𝑋,𝑌 (𝑥, 𝑦).
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FIGURE 1.5: Example of a discrete bivariate distribution. In
these data, in every trial, two pieces of information were collected:
Likert responses and yes-no question responses. The random vari-
able X represents Likert scale responses on a scale of 1-7. and the
random variable Y represents 0, 1 (incorrect, correct) responses to
comprehension questions.

𝑝𝑋,𝑌 x=1 x=2 x=3 x=4 x=5 x=6 x=7
y = 0 0.018 0.023 0.040 0.043 0.063 0.049 0.055
y = 1 0.031 0.053 0.086 0.096 0.147 0.153 0.142

TABLE 1.1: The joint PMF for two random variables 𝑋 and 𝑌 .

The marginal distribution 𝑝𝑌 is defined as follows. 𝑆𝑋 is the sup-
port of X, i.e., all the possible values of X.

𝑝𝑌 (𝑦) = ∑
𝑥∈𝑆𝑋

𝑝𝑋,𝑌 (𝑥, 𝑦). (1.7)

Similarly, the marginal distribution 𝑝𝑋 is defined as:
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𝑝𝑋(𝑥) = ∑
𝑦∈𝑆𝑌

𝑝𝑋,𝑌 (𝑥, 𝑦). (1.8)

𝑝𝑌 is easily computed, by summing up the rows; and 𝑝𝑋 by sum-
ming up the columns. You can see why this is called the marginal
distribution; the result appears in the margins of the table.

# P(Y)
(PY <- rowSums(t(probs)))

## 0 1
## 0.2914 0.7086

sum(PY) ## sums to 1

## [1] 1

# P(X)
(PX <- colSums(t(probs)))

## [1] 0.04912 0.07658 0.12570 0.13943 0.21020 0.20205
## [7] 0.19693

sum(PX) ## sums to 1

## [1] 1

The marginal probabilities sum to 1, as they should. The table
below shows the marginal probabilities.

Notice that to compute the marginal distribution of X, one is sum-
ming over all the Ys; and to compute the marginal distribution of
Y, one sums over all the X’s. We say that we are marginalizing out
the random variable that we are summing over. One can visualize
the two marginal distributions using barplots.
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𝑝𝑋,𝑌 x=1 x=2 x=3 x=4 x=5 x=6 x=7 P(Y)
y = 0 0.018 0.023 0.040 0.043 0.063 0.049 0.055 0.291
y = 1 0.031 0.053 0.086 0.096 0.147 0.153 0.142 0.709
P(X) 0.049 0.077 0.126 0.139 0.210 0.202 0.197

TABLE 1.2: The joint and marginal distributions of X and Y.
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For computing conditional distributions, recall that conditional
probability is defined as:

𝑝𝑋∣𝑌 (𝑥 ∣ 𝑦) = 𝑝𝑋,𝑌 (𝑥, 𝑦)
𝑝𝑌 (𝑦) (1.9)

and

𝑝𝑌 ∣𝑋(𝑥 ∣ 𝑦) = 𝑝𝑋,𝑌 (𝑥, 𝑦)
𝑝𝑋(𝑥) (1.10)

The conditional distribution of a random variable 𝑋 given that
𝑌 = 𝑦, where 𝑦 is some specific (fixed) value, is:

𝑝𝑋∣𝑌 (𝑥 ∣ 𝑦) = 𝑝𝑋,𝑌 (𝑥, 𝑦)
𝑝𝑌 (𝑦) provided 𝑝𝑌 (𝑦) = 𝑃(𝑌 = 𝑦) > 0

(1.11)
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As an example, let’s consider how 𝑝𝑋∣𝑌 would be computed. The
possible values of 𝑦 are 0, 1, and so we have to find the conditional
distribution (defined above) for each of these values. I.e., we have
to find 𝑝𝑋∣𝑌 (𝑥 ∣ 𝑦 = 0), and 𝑝𝑋∣𝑌 (𝑥 ∣ 𝑦 = 1).
Let’s do the calculation for 𝑝𝑋∣𝑌 (𝑥 ∣ 𝑦 = 0).

𝑝𝑋∣𝑌 (1 ∣ 0) =𝑝𝑋,𝑌 (1, 0)
𝑝𝑌 (0)

=0.018
0.291

=0.0619

(1.12)

This conditional probability value will occupy the cell X=1, Y=0 in
the table below summarizing the conditional probability distribu-
tion 𝑝𝑋|𝑌 . In this way, one can fill in the entire table, which will
then represent the conditional distributions 𝑝𝑋|𝑌 =0 and 𝑝𝑋|𝑌 =1.
The reader may want to take a few minutes to complete the table.

x=1 x=2 x=3 x=4 x=5 x=6 x=7
𝑝𝑋∣𝑌 (𝑥 ∣ 𝑦 = 0) 0.0619
𝑝𝑋∣𝑌 (𝑥 ∣ 𝑦 = 1)

TABLE 1.3: The conditional probability distribution of X given
Y.

Similarly, one can construct a table that shows 𝑝𝑌 |𝑋.

1.3.2 Example 2: Continuous bivariate distributions

Consider now the continuous bivariate case; this time, we will use
simulated data. Consider two normal random variables 𝑋 and 𝑌 ,
each of which coming from, for example, a Normal(0,1) distribu-
tion, with some correlation 𝜌 between the two random variables.

A bivariate distribution for two random variables 𝑋 and 𝑌 , each
of which comes from a normal distribution, is expressed in terms of
the means and standard deviations of each of the two distributions,
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and the correlation 𝜌 between them. The standard deviations and
correlation are expressed in a special form of a 2 × 2 matrix called
a variance-covariance matrix Σ. If 𝜌𝑢 is the correlation between
the two random variables, and 𝜎𝑥 and 𝜎𝑦 the respective standard
deviations, the variance-covariance matrix is written as:

Σ = ( 𝜎2
𝑥 𝜌𝜎𝑥𝜎𝑦

𝜌𝜎𝑥𝜎𝑦 𝜎2
𝑦

) (1.13)

The off-diagonals of this matrix contain the covariance between 𝑋
and 𝑌 .

The joint distribution of 𝑋 and 𝑌 is defined as follows:

(𝑋
𝑌 ) ∼ 𝒩2 ((0

0) , Σ) (1.14)

The joint PDF is written with reference to the two variables
𝑓𝑋,𝑌 (𝑥, 𝑦). It has the property that the area under the curve sums
to 1. Formally, we would write this as a double integral: we are
summing up the area under the curve for both dimensions X and
Y (hence two integrals).

∬
𝑆𝑋,𝑌

𝑓𝑋,𝑌 (𝑥, 𝑦) 𝑑𝑥𝑑𝑦 = 1 (1.15)

Here, the terms 𝑑𝑥 and 𝑑𝑦 express the fact that we are summing
the area under the curve along the X axis and the Y axis.

The joint CDF would be written as follows. The equation below
gives us the probability of observing a value like (𝑢, 𝑣) or some
value smaller than that (i.e., some (𝑢′, 𝑣′), such that 𝑢′ < 𝑢 and
𝑣′ < 𝑣.

𝐹𝑋,𝑌 (𝑢, 𝑣) =𝑃(𝑋 < 𝑢, 𝑌 < 𝑣)

= ∫
𝑢

−∞
∫

𝑣

−∞
𝑓𝑋,𝑌 (𝑥, 𝑦) 𝑑𝑦𝑑𝑥 for (𝑥, 𝑦) ∈ ℝ2 (1.16)
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As an aside, notice that the support for the normal distribution
ranges from minus infinity to plus infinity. There can however be
other PDFs with a more limited support; an example would be a
normal distribution whose pdf 𝑓(𝑥) is such that the lower bound
is truncated at, say, 0. In such a case, the area under the range
∫0
−∞ 𝑓(𝑥) 𝑑𝑥 will be 0 because the range lies outside the support
of the truncated normal distribution.

A visualization will help. The figures below shows a bivariate dis-
tribution with correlation zero (Figure 1.6), a positive (Figure 1.7)
and a negative correlation (Figure 1.8).
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FIGURE 1.6: A bivariate Normal distribution with zero corre-
lation. Shown are four plots: the top-right plot shows the three-
dimensional bivariate density, the top-left plot the contour plot of
the distribution (seen from above). The lower plots show the cumu-
lative distribution function from two views, as a three-dimensional
plot and as a contour plot.

In this book, we will make use of such multivariate distributions
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FIGURE 1.7: A bivariate Normal distribution with a positive
correlation of -0.6. Shown are four plots: the top-right plot shows
the three-dimensional bivariate density, the top-left plot the con-
tour plot of the distribution (seen from above). The lower plots
show the cumulative distribution function from two views, as a
three-dimensional plot and as a contour plot.

a lot, and it will soon become important to know how to generate
simulated bivariate or multivariate data that is correlated. So let’s
look at that next.

1.3.3 Generate simulated bivariate (multivariate) data

Suppose we want to generate 100 correlated pairs of data, with
correlation 𝜌 = 0.6. The two random variables have mean 0, and
standard deviations 5 and 10 respectively.

Here is how we would generate such data. First, define a variance-
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FIGURE 1.8: A bivariate Normal distribution with a negative
correlation of -0.6. Shown are four plots: the top-right plot shows
the three-dimensional bivariate density, the top-left plot the con-
tour plot of the distribution (seen from above). The lower plots
show the cumulative distribution function from two views, as a
three-dimensional plot and as a contour plot.

covariance matrix; then, use the multivariate analog of the rnorm
function, mvrnorm, to generate 100 data-points.

library(MASS)
## define a variance-covariance matrix:
Sigma <- matrix(c(5^2, 5 * 10 * 0.6, 5 * 10 * 0.6,

10^2), byrow = FALSE, ncol = 2)
## generate data:
u <- mvrnorm(n = 100, mu = c(0, 0), Sigma = Sigma)
head(u)
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## [,1] [,2]
## [1,] -0.453 5.233
## [2,] 4.222 6.372
## [3,] 3.602 10.269
## [4,] -6.151 -4.627
## [5,] -3.412 6.823
## [6,] -2.036 -18.415

A plot confirms that the simulated data are positively correlated.

plot(u[, 1], u[, 2])
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As an exercise, try changing the correlation to 0 or to −0.6, and
then plot the bivariate distribution that results.

One final useful thing to notice about the variance-covariance ma-
trix is that it can be decomposed into the component standard
deviations and an underlying correlation matrix. For example, con-
sider the matrix above:

Sigma

## [,1] [,2]
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## [1,] 25 30
## [2,] 30 100

One can decompose the matrix as follows. The matrix can be seen
as the product of a diagonal matrix of the standard deviations and
the correlation matrix:

## sds:
(sds <- c(5, 10))

## [1] 5 10

## diagonal matrix:
(sd_diag <- diag(sds))

## [,1] [,2]
## [1,] 5 0
## [2,] 0 10

## correlation matrix:
(corrmatrix <- matrix(c(1, 0.6, 0.6, 1), ncol = 2))

## [,1] [,2]
## [1,] 1.0 0.6
## [2,] 0.6 1.0

Given these two matrices, one can reassemble the variance-
covariance matrix:

sd_diag %*% corrmatrix %*% sd_diag

## [,1] [,2]
## [1,] 25 30
## [2,] 30 100

There is a built-in convenience function, sdcor3cov in the SIN
package that does this calculation, taking the vector of standard
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deviatios (not the diagonal matrix) and the correlation matrix to
yield the variance-covariance matrix:

SIN::sdcor2cov(stddev = sds, corr = corrmatrix)

## [,1] [,2]
## [1,] 25 30
## [2,] 30 100

We will be using this function a lot when simulating data from
hierarchical models.

1.4 Summary of useful R functions relating to univariate
distributions

Table 1.4 summarizes the different functions relating to univariate
PMFs and PDFs, using the Binomial and Normal as examples.

TABLE 1.4: Important R functions relating to two univariate
random variables, the Normal and the Binomial.

Discrete Continuous
Example: Binomial(n,𝜃) Normal(𝜇, 𝜎)
Likelihood function dbinom dnorm
Prob Y=y dbinom always 0
Prob 𝑌 ≥ 𝑦, 𝑌 ≤ 𝑦, 𝑦1 < 𝑌 < 𝑦2 pbinom pnorm
Inverse CDF qbinom qnorm
Generate simulated data rbinom rnorm

Other distributions, such as the t-distribution, the Uniform, Ex-
ponential, Gamma, etc. Beta, etc., have their own set of d-p-q-r
functions in R. The appendix summarizes the properties of the
distributions that we will need in this book.
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1.5 Summary of random variable theory
We can summarize the above informal concepts very compactly
if we re-state them in mathematical form. A mathematical state-
ment has the advantage not only of brevity but also of reducing
ambiguity.

Formally, a random variable 𝑌 is defined as a function from a
sample space of possible outcomes 𝑆 to the real number system:

𝑌 ∶ 𝑆 → ℝ (1.17)

The random variable associates to each outcome 𝜔 ∈ 𝑆 exactly
one number 𝑌 (𝜔) = 𝑦. 𝑆𝑌 is all the 𝑦’s (all the possible values of
𝑌 , the support of 𝑌 ). I.e., 𝑦 ∈ 𝑆𝑌 .

Every random variable 𝑌 has associated with it a probability
mass (distribution) function (PMF, PDF). I.e., PMF is used for
discrete distributions and PDF for continuous distributions. The
PMF/PDF maps every element of 𝑆𝑌 to a value between 0 and 1.

𝑝𝑌 ∶ 𝑆𝑌 → [0, 1] (1.18)

Probability mass functions (discrete case) and probability density
functions (continuous case) are functions that assign probabilities
or relative frequencies to all events in a sample space.

The expression

𝑌 ∼ 𝑓(⋅) (1.19)

will be used to mean that the random variable 𝑌 has pdf/pmf
𝑓(⋅). For example, if we say that 𝑌 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝜃), then we are
asserting that the PMF is:
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Binomial(𝑘|𝑛, 𝜃) = (𝑛
𝑘)𝜃𝑘(1 − 𝜃)𝑛−𝑘 (1.20)

If we say that 𝑌 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎), we are asserting that the PDF
is

𝑁𝑜𝑟𝑚𝑎𝑙(𝑦|𝜇, 𝜎) = 1√
2𝜋𝜎2 exp(−𝑦 − 𝜇)2

2𝜎2 ) (1.21)

The cumulative distribution function or CDF is defined as
follows:

For discrete distributions, the probability that 𝑌 is less than 𝑎 is
written:

𝑃(𝑌 < 𝑎) = 𝐹(𝑌 < 𝑎) =
𝑎

∑
−∞

𝑓(𝑦) (1.22)

For continuous distributions, the summation symbol ∑ above be-
comes the summation symbol for the continuous case, which is
the integral ∫. The upper and lower bounds are marked by adding
a subscript and a superscript on the integral. For example, if we
want the area under the curve between points a and b for some
function 𝑓(𝑦), we write ∫𝑎

𝑏 𝑓(𝑦) 𝑑𝑦. So, if we want the probability
that 𝑌 is less than 𝑎, we would write:

𝑃(𝑌 < 𝑎) = 𝐹(𝑌 < 𝑎) = ∫
𝑎

−∞
𝑓(𝑦) 𝑑𝑦 (1.23)

The above integral is simply summing up the area under the curve
between the points −∞ and 𝑎; this gives us the probability of
observing 𝑎 or a value smaller than 𝑎.
A final point here is that we can go back and forth between the
PDF and the CDF. If the PDF is 𝑓(𝑦), then the CDF that allows
us to compute quantities like 𝑃(𝑌 < 𝑏) is just the integral 𝐹(𝑌 <
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𝑏) = ∫𝑏
−∞ 𝑓(𝑦) 𝑑𝑦. If we differentiate the CDF, we get the PDF

back: 𝑑(𝐹(𝑦))/𝑑𝑦 = 𝑓(𝑦).
In bivariate distributions, the joint CDF is written 𝐹𝑋,𝑌 (𝑎, 𝑏) =
𝑃 (𝑋 ≤ 𝑎, 𝑌 ≤ 𝑏), where −∞ < 𝑎, 𝑏 < ∞. The marginal distribu-
tions of 𝐹𝑋 and 𝐹𝑌 are the CDFs of each of the associated random
variables. The CDF of 𝑋:

𝐹𝑋(𝑎) = 𝑃(𝑋 ≤ 𝑎) = 𝐹𝑋(𝑎, ∞) (1.24)

The CDF of 𝑌 :

𝐹𝑌 (𝑎) = 𝑃(𝑌 ≤ 𝑏) = 𝐹𝑌 (∞, 𝑏) (1.25)

𝑓(𝑥, 𝑦) is the joint PDF of 𝑋 and 𝑌 . Every joint PDF satisfies

𝑓(𝑥, 𝑦) ≥ 0 for all (𝑥, 𝑦) ∈ 𝑆𝑋,𝑌 , (1.26)
and

∬
𝑆𝑋,𝑌

𝑓(𝑥, 𝑦) d𝑥 d𝑦 = 1. (1.27)

where 𝑆𝑋,𝑌 is the joint support of the two random variables.

If X and Y are jointly continuous, they are individually continuous,
and their PDFs are:

𝑃(𝑋 ∈ 𝐴) =𝑃(𝑋 ∈ 𝐴, 𝑌 ∈ (−∞, ∞))

= ∫
𝐴

∫
∞

−∞
𝑓(𝑥, 𝑦) 𝑑𝑦 𝑑𝑥

= ∫
𝐴

𝑓𝑋(𝑥) 𝑑𝑥

(1.28)

where
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𝑓𝑋(𝑥) = ∫
∞

−∞
𝑓(𝑥, 𝑦) 𝑑𝑦 (1.29)

Similarly:

𝑓𝑌 (𝑦) = ∫
∞

−∞
𝑓(𝑥, 𝑦) 𝑑𝑥 (1.30)

1.6 Further reading
For readers interested in the mathematics needed for statistics,
the books by Fox (2009), Gill (2006), and Moore and Siegel (2013)
are useful. The essential matrix algebra needed for statistics is
discussed in Fieller (2016). Accessible introductions to probability
theory are Morin (2016) and Blitzstein and Hwang (2014). Kerns
(2010) contains a very well-written and freely available general
introduction to random variable theory and statistics, but assumes
the reader knows the basics of calculus.

1.7 Exercises
1.7.1 Practice using the pnorm function
1.7.1.1 Part 1

Given a normal distribution with mean 73 and standard devia-
tion 101, use the pnorm function to calculate the probability of
obtaining values between 30 and -47 from this distribution.

1.7.1.2 Part 2

Calculate the following probabilities. Given a normal distribution
with mean 50 and standard deviation 3, what is the probability of
getting
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• a score of 40 or less
• a score of 40 or more
• a score of 59 or more

1.7.1.3 Part 3

Given a normal distribution with mean 55 and standard deviation
6, what is the probability of getting

• a score of 50 or less.
• a score between 52 and 58.
• a score of mu+1 or more.

1.7.2 Practice using the qnorm function
1.7.2.1 Part 1

Consider a normal distribution with mean 1 and standard devia-
tion 1.

Compute the lower and upper boundaries such that:

• the area (the probability) to the left of the lower boundary is
0.46.

• the area (the probability) to the left of the upper boundary is
0.81.

1.7.2.2 Part 2

Given a normal distribution with mean 59.061 and standard devi-
ation 0.673. There exist two quantiles, the lower quantile q1 and
the upper quantile q2, that are equidistant from the mean 59.061,
such that the area under the curve of the Normal probability be-
tween q1 and q2 is 85%. Find q1 and q2.

1.7.3 Practice using qt

Take an independent random sample of size 157 from a normal
distribution with mean 170, and standard deviation 37. Next, we
are going to pretend we don’t know the population parameters
(the mean and standard deviation). We compute the MLEs of the
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mean and standard deviation using the data and get the sample
mean 171.138 and the sample standard deviation 35.223.

• Compute the estimated standard error using the sample stan-
dard deviation provided above.

• What are your degrees of freedom for the relevant t-
distribution?

• Calculate the absolute critical t-value for a 95% confidence
interval using the relevant degrees of freedom you just wrote
above.

• Next, compute the lower bound of the 95% confidence interval
using the estimated standard error and the critical t-value.

• Finally, compute the upper bound of the 95% confidence inter-
val using the estimated standard error and the critical t-value.

1.7.4 Maximum likelihood estimation 1

Given the data point 16.655. The function dnorm gives the likeli-
hood given a data point (or multiple data points) and a value for
the mean and the standard deviation (sd). Using dnorm, compute

• the likelihood of the data point 16.655 assuming a mean of 12
and standard deviation 5.

• the likelihood of the data point 16.655 assuming a mean of 11
and standard deviation 5.

• the likelihood of the data point 16.655 assuming a mean of 10
and standard deviation 5.

• the likelihood of the data point 16.655 assuming a mean of 9
and standard deviation 5.

1.7.5 Maximum likelihood estimation 2

You are given 10 independent and identically distributed data
points that are assumed to come from a Normal distribution with
unknown mean and unknown standard deviation:

x

## [1] 513 491 501 500 494 490 500 507 515 481
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The function dnorm gives the likelihood given multiple data points
and a value for the mean and the standard deviation. The log-
likelihood can be computed by typing dnorm(...,log=TRUE).

The product of the likelihoods for two independent data points
can be computed like this: Suppose we have two independent and
identically distributed data points 5 and 10. Then, assuming that
the Normal distribution they come from has mean 10 and standard
deviation 2, the joint likelihood of these is:

dnorm(5, mean = 10, sd = 2) * dnorm(10, mean = 10,
sd = 2)

## [1] 0.001748

It is easier to do this on the log scale, because then one can add
instead of multiplying. This is because log(𝑥×𝑦) = log(𝑥)+ log(𝑦).
For example:

log(2 * 3)

## [1] 1.792

log(2) + log(3)

## [1] 1.792

So the joint log likelihood of the two data points is:

dnorm(5, mean = 10, sd = 2, log = TRUE) + dnorm(10,
mean = 10, sd = 2, log = TRUE)

## [1] -6.349

Even more compactly:
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sum(dnorm(c(5, 10), mean = 10, sd = 2, log = TRUE))

## [1] -6.349

• Given the 10 data points above, calculate the maximum likeli-
hood estimate (MLE) of the expectation.

• The sum of the log-likelihoods of the data-points x, using as
the mean the MLE from the sample, and standard deviation 5.

• What is the sum of the log-likelihood if the mean used to com-
pute the log-likelihood is 497.2?

• Which value for the mean, the MLE or 497.2, gives the higher
log-likelihood?

1.7.6 Generating bivariate data

Generate 50 data points from two random variables X and Y,
where 𝑋 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(50, 100) and 𝑌 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(100, 20). The cor-
relation between the random variables is 0.7. Plot the simulated
data points from Y against those from X.

1.7.7 Generating multivariate data

The bivariate case can be generalized to more than two dimensions.
Generate 50 data points from three random variables X, Y, and
Z, where 𝑋 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(50, 100), 𝑌 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(100, 20), and 𝑍 ∼
𝑁𝑜𝑟𝑚𝑎𝑙(200, 50). The correlation between the random variables
X and Y is 0.5, between X and Z is 0.2, an between Y and Z
is 0.7. Here, you will have to define a 3 × 3 variance covariance
matrix, with the pairwise covariances in the off-diagonals. Plot
the simulated data points as two-dimensional figures: Y against X,
Y against Z, and X against Z.
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Hypothetical repeated sampling and the t-test

This chapter introduces some of the foundational ideas behind
hypothesis testing in the frequentist framework. The key idea if
that of hypothetical repeated sampling. When we fit a model to
a given data-set, we are assuming that this is one of potentially
infinite numbers of exact repetitions of an experiment. We leverage
some amazing properties of these exact repetitions in order to draw
inferences from our particular data. The key idea to understand
here is the central limit theorem, to which we turn next.

2.1 The central limit theorem using simulation
Suppose we collect some data, which can be represented by a vector
𝑦; this is a single sample. Given data 𝑦, and assuming for concrete-
ness that the underlying likelihood is a 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 500, 𝜎 =
100), the sample mean and standard deviation, ̄𝑦 and 𝑠 give us an
estimate of the unknown parameters mean 𝜇 and the standard de-
viation 𝜎 that are assumed to generate the data. Figure 2.1 shows
the distribution of a particular sample, where the number of data
points is 𝑛 = 1000. Note that in this example the parameters are
specified by us, so they are not unknown; in a real data-collection
situation, the sample mean and standard deviation are all we have
as estimates of the parameters.

Suppose now that you had not a single sample of size 1000 but
many repeated samples. This isn’t something one can normally do
in real life; we often run a single experiment or, at most, repeat
the same experiment once. However, one can simulate repeated
sampling easily within R. Let us take 100 repeated samples like

35
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FIGURE 2.1: A sample of data y, from the distribution Nor-
mal(500,100).

the one above, and save the samples in a matrix containing n=1000
rows and 100 columns, each column representing an experiment:

mu <- 500
sigma <- 100
## number of experiments:
k <- 100
## store for data:
y_matrix <- matrix(rep(NA, n * k), ncol = k)
for (i in 1:k) {

## expt result with sample size n:
y_matrix[, i] <- rnorm(n, mean = mu, sd = sigma)

}

Now, if we compute the means ̄𝑦𝑘 of each of the 𝑘 = 1, … , 100 ex-
periments we just carried out, if certain conditions are met, these
means will be normally distributed, with mean 𝜇 and standard
deviation 𝜎/√𝑛. To understand this point, it is useful to first vi-
sualize the distribution of means and graphically summarize this
standard deviation, which confusingly is called standard error.
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## compute means from each replication:
y_means <- colMeans(y_matrix)
## the mean and sd (=standard error) of the means
mean(y_means)

## [1] 499.6

sd(y_means)

## [1] 3.053
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FIGURE 2.2: Sampling from a normal distribution (left); and
the sampling distribution of the means under repeated sampling
(right). The right-hand plot shows an overlaid normal distribution,
and the standard deviation (standard error) as error bars.

The sampling distribution of means has a normal distribution pro-
vided two conditions are met: (a) the sample size should be large
enough, and (b) 𝜇 and 𝜎 are defined for the probability density
or mass function that generated the data. This fact is called the
central limit theorem (CLT). The significance of the CLT for us
as researchers is that from the summary statistics computed from
a single sample, we can obtain an estimate of this distribution of
means: 𝑁𝑜𝑟𝑚𝑎𝑙( ̄𝑦, 𝑠/√𝑛).
The statement that the sampling distribution of the means will
be normal, with mean 𝜇 and standard deviation 𝜎/√𝑛, can be
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derived formally through a surprisingly simple application of ran-
dom variable theory. Suppose we gather independent and identi-
cally distributed data 𝑦1, … , 𝑦𝑛, each of which is generated by a
random variable 𝑌 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎).
When we compute the mean ̄𝑦 for each sample, we are assuming
that each of the means is coming from a random variable ̄𝑌 , which
is just a linear combination of values generated by instances of the
random variable 𝑌 , which itself has a pdf with mean (expectation)
𝜇 and variance 𝜎2:

̄𝑌 = 1
𝑛

𝑛
∑
𝑖=1

𝑌 = 1
𝑛𝑌1 + ⋯ + 1

𝑛𝑌𝑛 (2.1)

So, the expectation of ̄𝑌 is

𝐸[ ̄𝑌 ] =𝐸[ 1
𝑛𝑌1 + ⋯ + 1

𝑛𝑌𝑛]

= 1
𝑛(𝐸[𝑌 ] + ⋯ + 𝐸[𝑌 ])

= 1
𝑛(𝜇 + ⋯ + 𝜇)

= 1
𝑛𝑛𝜇

=𝜇

(2.2)

And the variance of ̄𝑌 is

𝑉 𝑎𝑟( ̄𝑌 ) =𝑉 𝑎𝑟( 1
𝑛𝑌1 + ⋯ + 1

𝑛𝑌𝑛)

= 1
𝑛[𝑉 𝑎𝑟(𝑌1 + ⋯ + 𝑌𝑛)]

= 1
𝑛2 𝑉 𝑎𝑟(𝑌1 + ⋯ + 𝑌𝑛)

(2.3)

The last line above arises because the variance of a random variable
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𝑍 multiplied by a constant 𝑎, 𝑉 𝑎𝑟(𝑎𝑍) is 𝑎2𝑉 𝑎𝑟(𝑍). Here, 𝑎 =
1/𝑛, so 𝑎2 = 1/𝑛2. Because 𝑌1, … , 𝑌𝑛 are independent, we can
compute the variance 𝑉 𝑎𝑟(𝑌1 +⋯+𝑌𝑛) by using the fact that the
variance of the sum of independent random variables is the sum
of their variances. This fact gives us:

1
𝑛2 𝑉 𝑎𝑟(𝑌1 + ⋯ + 𝑌𝑛) = 1

𝑛2 (𝑉 𝑎𝑟(𝑌 ) + ⋯ + 𝑉 𝑎𝑟(𝑌 ))

= 1
𝑛2 𝑛𝑉 𝑎𝑟(𝑌 )

= 1
𝑛𝑉 𝑎𝑟(𝑌 )

=𝜎2

𝑛

(2.4)

This derives the above result that the expectation (i.e., the mean)
and variance of the sampling distribution of the sample means are

𝐸[ ̄𝑌 ] = 𝜇 𝑉 𝑎𝑟( ̄𝑌 ) = 𝜎2

𝑛 (2.5)

The Central Limit Theorem, not proved here (for a proof, see p. 267
of Miller and Miller (2004)) can be summarized as follows.

Central Limit Theorem

Let 𝑓(𝑌 ) be the pdf of a random variable 𝑌 , and assume that the
pdf has mean 𝜇 and variance 𝜎2. Then:

̄𝑌 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎2/𝑛) 𝐸[𝑌 ] = 𝜇, 𝑉 𝑎𝑟(𝑌 ) = 𝜎2 when n is large
(2.6)

For us, the practical implication of this result is huge. From a sin-
gle sample 𝑦1, … , 𝑦𝑛, we can derive the distribution of hypothetical
sample means under repeated sampling. That is, it becomes pos-
sible to say something about what the plausible and implausible
values of the sample mean are under repeated sampling. This is
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the basis for all hypothesis testing and statistical inference in the
frequentist framework that we will look at in this book.

Sometimes the central limit theorem is misunderstood to imply
that the distribution that is assumed to generate the data is al-
ways going to be normal. It is important to understand that there
are two distributions we are talking about here. First, there is the
distribution that the data were generated from; this need not be
normal. For example, you could get data from a Normal, Exponen-
tial, Gamma, or other distribution. Second, there is the sampling
distribution of the sample mean under repeated sampling. It is the
sampling distribution that the central limit theorem is about, not
the distribution that generated the data.

2.2 Three examples of the sampling distribution
In the above discussion, the underlying pdf we sampled from above
was a normal distribution. However, it need not be. Consider two
examples: the underlying pdf is an Exponential or a Gamma dis-
tribution.

The Exponential distribution has a parameter 𝜆 (parameterized
in R as a rate, 1/𝜆); its mean is 𝜆 and its variance is 1/𝜆2. The
sampling distribution is normal, even though the underlying dis-
tribution is an Exponential.

A further example is samples from a Gamma distribution. Suppose
we sample from a Gamma distribution with shape parameter cho-
sen arbitrarily to be 1. The distribution of means is again going to
be approximately normal.

As a final example, consider what happens if sample from a dis-
tribution, the Cauchy, that doesn’t have any mean or variance
defined for it.

As the figure illustrates, when the mean and variance for the likeli-
hood are undefined, the central limit theorem doesn’t hold. In the
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FIGURE 2.3: Sampling from an exponential.

 

0 2 4 6

0.
0

0.
2

0.
4

0.
6

Samples from a Gamma

D
en

si
ty

Sampling distribution of means 
 (Data sampled from Gamma)

means under repeated sampling

D
en

si
ty

0.95 1.00 1.05 1.10

0
5

10
15

 

FIGURE 2.4: Sampling from a Gamma distribution.
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FIGURE 2.5: Sampling from a Cauchy distribution.
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rest of this book, we will always assume that the data are coming
from a distribution that has a mean and variance defined for it.

2.3 The confidence interval, and what it’s good for
Once we have sample of data 𝑦, and once the sample mean ̄𝑦 and
the 𝑆𝐸 = 𝑠/√𝑛 have been computed, it is common to define a
so-called 95% confidence interval:

̄𝑦 ± 2𝑆𝐸 (2.7)

Because the sampling distribution of means is normally dis-
tributed, and because 95% of the area under the curve is covered
by two times the standard deviation of the normal distribution,
the upper and lower bounds of the interval defined by the interval

̄𝑦 ± 2𝑆𝐸 covers approximately 95% of the area under the curve in
the sampling distribution.

This interval is called the confidence interval (CI) and has the
following meaning: If you take samples repeatedly and compute
the CI each time, 95% of those CIs will contain the true population
mean 𝜇. One can simulate this situation. This time we will do 1000
repeated experiments instead of 100.

mu <- 500
sigma <- 100
n <- 1000
nsim <- 1000
lower <- rep(NA, nsim)
upper <- rep(NA, nsim)
for (i in 1:nsim) {

y <- rnorm(n, mean = mu, sd = sigma)
lower[i] <- mean(y) - 2 * sd(y)/sqrt(n)
upper[i] <- mean(y) + 2 * sd(y)/sqrt(n)
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}

## check how many CIs contain mu:
CIs <- ifelse(lower < mu & upper > mu, 1, 0)
## approx. 95% of the CIs contain true mean:
round(table(CIs)[2]/sum(table(CIs)), 2)

## 1
## 0.94

Figure 2.3 visualizes the coverage properties of the confidence in-
terval in 100 simulations; by coverage we mean here the proportion
of cases where the true 𝜇 is contained in the CI.

\begin{figure}
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\caption{Illustration of the meaning of the 95% confidence inter-
val. The dark bars are CIs which do not contain the true mean.}
\end{figure}

The confidence interval is widely misinterpreted in a Bayesian way,
i.e., as representing the range of plausible value of the 𝜇 param-
eter. This is the wrong interpretation because 𝜇 is a point value
by assumption, it doesn’t have a PDF associated with it. By con-
trast, the Bayesian credible interval does have this interpretation.
In practice, we find that in most modeling settings we have en-
countered, the frequentist and Bayesian credible interval have very
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similar widths, with the Bayesian interval being slightly wider de-
pending on the prior specifications.

Given the convoluted meaning of the CI, and the impossibility of
interpreting a single CI, it is reasonable to ask: what good is a
CI? One can treat the CI as a graphical summary of width of the
sampling distribution of the mean—the wider the sampling distri-
bution, the more the implied variability under repeated sampling.
The confidence interval can therefore be used as a visual summary
of how uncertain we can be about the estimate of the sample mean
under hypothetical repeated sampling. See Cumming (2014) for a
useful perspective relating to using confidence intervals for infer-
ence.

We turn next to the central ideas behind the hypothesis test. We
begin with the humble one-sample t-test, which contains many
subtleties and is well worth close study before we move on to the
main topic of this book: linear mixed models.

2.4 Hypothesis testing: The one sample t-test
With the central limit theorem and the idea of hypothetical re-
peated sampling behind us, we turn now to one of the simplest
statistical tests that one can do with continuous data: the t-test.

Due to its simplicity, it is tempting to take only a cursory look at
the t-test and move on immediately to the linear (mixed) model.
This would be a mistake. The humble t-test is surprising in many
ways, and holds several important lessons for us. There are sub-
tleties in this test, and a close connection to the linear mixed
model. For these reasons, it is worth slowing down and spending
some time understanding this test. Once the t-test is clear, more
complex statistical tests will be easier to follow, because the logic
of these more complex tests will essentially be more of the same,
or variations on this general theme. You will see later that t-test
can be seen as an analysis of variance or ANOVA; and the paired
t-test is exactly the linear mixed model with varying intercepts.
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2.4.1 The one-sample t-test

As in our running example, suppose we have a random sample 𝑦
of size 𝑛, and the data come from a 𝑁(𝜇, 𝜎) distribution, with
unknown parameters 𝜇 and 𝜎. We can estimate 𝜇 from the sample
mean ̄𝑦, which we will sometimes also write as ̂𝜇. We can also
estimate 𝜎 from the sample standard deviation 𝑠, which we can
also write as �̂�. These estimates in turn allow us to estimate the
sampling distribution of the mean under (hypothetical) repeated
sampling:

𝑁( ̂𝜇, �̂�√𝑛) (2.8)

It is important to realize here that the above sampling distribution
is only as realistic as the estimates of the mean and standard
deviation parameters—if those are inaccurately estimated, then
the sampling distribution is not realistic either.

Assume as before that we take an independent random sample of
size 1000 from a random variable 𝑌 that is normally distributed,
with mean 500 and standard deviation 100. As usual, begin by
estimating the mean and SE:

n <- 1000
mu <- 500
sigma <- 100
## generate simulated data:
y <- rnorm(1000, mean = 500, sd = 100)
## compute summary statistics:
y_bar <- mean(y)
SE <- sd(y)/sqrt(n)

The null hypothesis significance testing (NHST) approach as prac-
tised in psychology and other areas is to set up a null hypothesis
that 𝜇 has some fixed value. Just as an example, assume that our
null hypothesis is:
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𝐻0 ∶ 𝜇 = 450 (2.9)

This amounts to assuming that the true sampling distribution of
sample means is (approximately) normally distributed and cen-
tered around 450, with the standard error estimated from the data.
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The intuitive idea here is that - if the sample mean ̄𝑦 is “near” the
hypothesized 𝜇 (here, 450), the data are possibly consistent with
the null hypothesis distribution. - if the sample mean ̄𝑦 is “far”
from the hypothesized 𝜇, the data are inconsistent with the null
hypothesis distribution.

The terms “near” and “far” will be quantified by determining how
many standard error units the sample mean is from the hypothe-
sized mean. This way of thinking shifts the focus away from the
sampling distribution above, towards the distance measured in
standard error units.

The distance between the sample mean and the hypothesized mean
can be written in SE units. We will say that the sample mean is 𝑡
standard errors away from the hypothesized mean:
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𝑡 × 𝑆𝐸 = ̄𝑥 − 𝜇 (2.10)

If we divide both sides with the standard error, we obtain the
so-called observed t-statistic:

𝑡 = ̄𝑥 − 𝜇
𝑆𝐸 (2.11)

This observed t-value, an expression of the distance between the
sample mean and the hypothesized mean, becomes the basis for
the statistical test.

Notice that the t-value is a random variable: it is a transforma-
tion of �̄�, the random variable generating the sample means. The
t-value can therefore be seen as an instance of the following trans-
formed random variable 𝑇 :

𝑇 = �̄� − 𝜇
𝑆𝐸 (2.12)

This random variable has a PDF associated with it, the t-
distribution, which is defined in terms of the sample size 𝑛; the pdf
is written 𝑡(𝑛 − 1). Under repeated sampling, the t-distribution is
generated from this random variable 𝑇 .

We will compactly express the statement that “the observed t-
value is assumed to be generated under repeated sampling from a
t-distribution with n-1 degrees of freedom” as:

𝑇 ∼ 𝑡(𝑛 − 1) (2.13)

For large 𝑛, the PDF of the random variable 𝑇 approaches 𝑁(0, 1).
This is illustrated in Figure 2.6; notice that the t-distribution has
fatter tails than the normal for small 𝑛, say 𝑛 < 20, but for larger n,
the t-distribution and the normal are essentially identical. Inciden-
tally, when n=2, the t-distribution 𝑡(1) is the Cauchy distribution
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FIGURE 2.6: A visual comparison of the t-distribution (with
degrees of freedom ranging from 1 to 50) with the standard normal
distribution (N(0,1)).

we saw earlier; this distribution is characterized by fat tails, and
has no mean or variance defined for it.

Thus, given a sample size 𝑛, we can define a t-distribution corre-
sponding to the null hypothesis distribution. For large values of
𝑛, we could even use 𝑁(0, 1), although it is traditional in psychol-
ogy and linguistics to always use the t-distribution no matter how
large 𝑛 is.

The null hypothesis testing procedure proceeds as follows:

• Define the null hypothesis: in our example, the null hypothe-
sis was that 𝜇 = 450. This amounts to making a commitment
about what fixed value we think the true underlying distribu-
tion of sample means is centered at.

• Given data of size 𝑛, estimate ̄𝑦, standard deviation 𝑠, and from
that, estimate the standard error 𝑠/√𝑛. The standard error
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will be used to describe the sampling distribution’s standard
deviation.

• Compute the observed t-value:

𝑡 = ̄𝑦 − 𝜇
𝑠/√𝑛 (2.14)

• Reject null hypothesis if the observed t-value is “large” (to be
made more precise next).

• Fail to reject the null hypothesis, or (under some conditions)
even go so far as to accept the null hypothesis, if the observed
t-value is “small”.

What constitutes a large or small observed t-value? Intuitively,
the t-value from the sample is large when we end up far in either
tail of the distribution. The two tails of the t-distribution will be
referred to as the rejection region. The word region here refers
to the real number line along the x-axis, under the tails of the
distribution. The rejection region will go off to infinity on the outer
sides, and is demarcated by a vertical line on the inner side of each
tail. This is shown in Figure 2.7. It goes off to infinity because the
support—the range of possible values—of the random variable that
the t-distribution belongs to stretches from minus infinity to plus
infinity.

The location of the vertical lines is determined by the so-called
critical t-value along the x-axis of the t-distribution. This is the
value such that the area under the curve in the tails to the left or
right of the tails is 0.025. As discussed in chapter 1, this area under
the curve represents the probability of observing a value as extreme
as the critical t-value, or some value that is more extreme. Notice
that if we ask ourselves what the probability is of observing some
particular t-value (a point value), the answer must necessarily be
0 (if you are unclear about why, re-read chapter 1). But we can ask
the question: what is the absolute t-value, written |𝑡|, such that
𝑃 (𝑇 > |𝑡|) = 0.025? That’s the critical t-value.

For a given sample size 𝑛, we can identify the rejection region
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FIGURE 2.7: The rejection region in a t-distribution.

by using the qt function, whose usage is analogous to the qnorm
function, discussed in chapter 1.

Because the shape of the t-distribution depends on the degrees of
freedom (n-1), the critical t-value beyond which we reject the null
hypothesis will change depending on sample size. For large sample
sizes, say 𝑛 > 50, the rejection point is about 2.

abs(qt(0.025, df = 15))

## [1] 2.131

abs(qt(0.025, df = 50))

## [1] 2.009

Consider the observed t-value from our sample in our running ex-
ample:
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## null hypothesis mean:
mu <- 450
(t_value <- (y_bar - mu)/SE)

## [1] 15.49

This observed t-value is huge and is telling you the distance of the
sample mean from the null hypothesis mean 𝜇 in standard error
units.

𝑡 = ̄𝑦 − 𝜇0
𝑠/√𝑛 or 𝑡 𝑠√𝑛 = ̄𝑦 − 𝜇0 (2.15)

For large sample sizes, if the absolute t-value |𝑡| is greater than
2 (approximately), we will reject the null hypothesis. The choice
of 2 is purely conventional and comes from standard practice in
psychology and related disciplines (as we will see in this book,
standard practice is sometimes not a good-enough reason to decide
on such things!).

For a smaller sample size 𝑛, you can compute the exact critical
t-value:

qt(0.025, df = n - 1)

## [1] -1.962

Why is this critical t-value negative in sign? That is because it
is on the left-hand side of the t-distribution, which is symmetric.
The corresponding value on the right-hand side is:

qt(0.975, df = n - 1)

## [1] 1.962

These values are of course identical if we ignore the sign. This is
why we always frame our discussion around the absolute t-value.
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In R, the built-in function t.test delivers the observed t-value.
Given our running example, with the null hypothesis 𝜇 = 450, R
returns the following:

## observed t-value from t-test function:
t.test(y, mu = 450)$statistic

## t
## 15.49

The default value for the null hypothesis mean 𝜇 in this function
is 0; so if one doesn’t define a null hypothesis mean, the statistical
test is done with reference to a null hypothesis that 𝜇 = 0. That
is why this t-value does not match our calculation above:

t.test(y)$statistic

## t
## 157.8

In the most common usage of the t-test, the null hypothesis mean
will be 0, because usually one is comparing a difference in means
between two conditions or two sets of conditions. So the above line
of code will work out correctly in those cases; but if you ever have
a different null hypothesis mean than 0, then you have to specify
it in the t.test function.

So, the t-test is used as if it furnishes a decision rule: either reject
the null hypothesis or fail to reject it. Whenever we do an experi-
ment and carry out a t-test, we use the t-test to make a decision:
reject or fail to reject the null hypothesis.

Recall that behind the t-test lies the assumption that the observed
t-value is coming from a random variable, 𝑇 ∼ 𝑡(𝑛 − 1). The par-
ticular t-value we observe from a particular data-set belongs to
a distribution of t-values under hypothetical repeated sampling.
Thus, implicit in the logic of the t-test—and indeed every frequen-
tist statistical test—is the assumption that the experiment is in
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principle repeatable: the experiment can in principle be re-run as
many times as we want, assuming we have the necessary resources
and time.

This implicit idea of the experiment’s repeatability leads to an
important aspect of the t-test: its long-run properties. In other
words, its ability (at least in theory) to lead the researchers to the
correct decision in the long run, i.e., under (hypothetical) repeated
sampling. We turn to this issue next.

2.4.2 Type I, II error, and power

When we do a hypothesis test using the t-test, the observed t-value
will either fall in the rejection region, leading us to reject the null
hypothesis, or it will land in the non-rejection region, leading us
to fail to reject the null. That is a single, one-time event.

However, the null hypothesis can be either true or not true; we
don’t know which of those two possibilities is the reality. When
we say that the null could be true, we mean that the parameter
𝜇 actually does have the hypothesized value 𝜇0; when we say that
the null could be false, we mean that the parameter 𝜇 has some
specific value 𝜇𝑎𝑙𝑡 other than 𝜇0. We can represent these two al-
ternative possible realities in a tabular form, as shown below. The
two columns show the two possible worlds, one in which the null
is true, and the other in which it is false. The two rows show the
two possible decisions we can take based on the observed t-value:
reject the null or fail to reject it.

Possible world 1 Possible world 2
𝐻0 TRUE: 𝜇 = 𝜇0 𝐻0 FALSE 𝜇 = 𝜇𝑎𝑙𝑡

Decision: ‘reject’: 𝛼 1 − 𝛽
Type I error Power

Decision: ‘fail to reject’: 1 − 𝛼 𝛽
Type II error

As the table shows, we can make two kinds of mistakes:

• Type I error or 𝛼: Reject the null when it’s true.
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• Type II error or 𝛽: Accept the null when it’s false.

In psychology and related areas, Type I error is fixed a priori at
0.05. This stipulated Type I error value is why the absolute critical
t-value is kept at approximately 2; if, following recommendations
from Benjamin et al. (2018), we were to stipulate that the Type I
error be 0.005, then the critical t-value would have had to be set
at:

abs(qt(0.0025, df = n - 1))

## [1] 2.813

This suggested change in convention hasn’t been taken up yet in
cognitive science, but this could well change one day.

Type II error, the probability of incorrectly accepting the null hy-
pothesis when it is false with some particular value for the pa-
rameter 𝜇, is conventionally recommended (e.g., by the American
Psychological Association) to be kept at 0.20 or lower. This im-
plies that the probability of correctly rejecting a null hypothesis
for some particular true value of 𝜇 is 1-Type II error. This probabil-
ity, called statistical power, or just power, should then obviously
be larger than 0.80. Again, there is nothing special about these
stipulations; they are conventions that became the norm over time.

Next, we will consider the trade-off between Type I and II error.
For simplicity, assume that the standard error is 1, and the null
hypothesis is that 𝜇 = 0. This means that the t-value is really the
sample mean.

Consider the concrete situation where, in reality, the true value of
𝜇 is 2. As mentioned above, the null hypothesis 𝐻0 is that 𝜇 = 0.
Now the 𝐻0 is false because 𝜇 = 2 and not 0. Type I and II error
can be visualized graphically as shown in Figure 2.8.

To understand Figure 2.8, one has to consider two distributions
side by side. First, consider the null hypothesis distribution, cen-
tered at 0. Under the null hypothesis distribution, the rejection
region lies below the dark colored tails of the distributions. The
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FIGURE 2.8: A visualization of Type I and II error. The dark-
shaded tails of the left-hand side distribution represent Type I
error; and the light-colored shaded region of the right-hand side
distribution represents Type II error. Power is the unshaded area
under the curve in the right-hand side distribution.

area under the curve in these dark-colored tails is the Type I er-
ror (conventionally set at 0.05) that we decide on before we even
conduct the experiment and collect the data. Because the Type I
error is set at 0.05, and because the t-distribution is symmetric,
the area under the curve in each tail is 0.025. The absolute critical
t-value helps us demarcates the inner boundaries of the rejection
regions through the vertical lines shown in the figure. These verti-
cal lines play a crucial role in helping us understand Type II error
and power. This becomes clear when we consider the distribution
representing the alternative possible value of 𝜇, the distribution
centered around 2. In this second distribution, consider now the
area under the curve between the vertical lines demarcating the
rejection region under the null. This area under the curve is the
probability of accepting the null hypothesis when the null hypoth-
esis is false with some specific value (here, when 𝜇 has value 2).
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Some interesting observations follow. Suppose that the true effect
is in fact 𝜇 = 2, as in the above illustration. Then,

• Simply decreasing Type I error to a smaller value like 0.005 will
also increase Type II error, which means that power (1-Type II
error) will fall.

• Increasing sample size will squeeze the vertical lines closer to
each other, reducing Type II error, and therefore increasing
power. Decreasing sample size will have the opposite effect.

• If we design an experiment with a larger effect size, e.g., by
setting up a stronger manipulation (concete examples will be
discussed in this book later on), our Type II error will go down,
and therefore power will go up. Figure 2.9 shows a graphical
visualization of a situation where the true effect size is 𝜇 = 4.
Here, Type II error is much smaller compared to Figure 2.8,
where 𝜇 = 2.
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FIGURE 2.9: The change in Type II error if the true effect has
mean 4.

In summary, when we plan out an experiment, we are also required
to specify the Type I and II error associated with the design. Both
sources of error are within our control, at least to some extent. The
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Type I error we decide to use will determine our critical t-value
and therefore our decision criterion for rejecting, failing to reject,
or even (under certain conditions, to be discussed below) accepting
the null hypothesis.

The Type II error we decide on will determine the long-run prob-
ability of incorrectly accepting the null hypothesis; its inverse (1-
Type II error), statistical power, will determine the long-run prob-
ability of correctly rejecting the null hypothesis under the assump-
tion that the 𝜇 has some particular assumed value.

That’s the theory anyway. In practice, researchers only rarely con-
sider the power properties of their experiment design; the focus
is almost exclusively on Type I error. The neglect of power in
experiment design has had interesting consequences for theory de-
velopment, as we will see later in this book. For a case study in
psycholinguistics, see Vasishth et al. (2018).

2.4.3 How to compute power for the one-sample t-test

Power is a function of three variables:

• the effect size
• the standard deviation
• the sample size.

There are two ways that one can compute power in connec-
tion with the t-test: either one can use the built-in R function,
power.t.test, or one can use simulation.

2.4.3.1 Power calculation using the power.t.test

Suppose that we have an expectation that an effect size is 15 ms
±5 ms (this could be based on the predictions of a theoretical
model, or prior data); suppose also that prior experiments show
standard deviations ranging from 100 to 300 ms. This is enough
information to compute a power curve as a function of effect size
and standard deviation. See Figure 2.10 and the associated code
below.
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sds <- seq(100, 300, by = 1)
lower <- power.t.test(delta = 15 - 5, sd = sds, n = 10,

strict = TRUE)$power
upper <- power.t.test(delta = 15 + 5, sd = sds, n = 10,

strict = TRUE)$power
meanval <- power.t.test(delta = 15, sd = sds, n = 10,

strict = TRUE)$power

plot(sds, meanval, type = "l", main = "Power curve (n=10)\n using power.t.test",
xlab = "standard deviation", ylab = "effect size")

lines(sds, lower, lty = 2)
lines(sds, upper, lty = 2)
text(200, 0.05, "10")
text(200, 0.054, "15")
text(200, 0.056, "20")
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FIGURE 2.10: An illustration of a power curve for 10 partici-
pants, as a function of standard deviation, and three estimates of
the effect: 15, 10, and 20.
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2.4.3.2 Power calculations using simulation

An analogous calculation as the one shown above using the
power.t.test function can also be done using simulated data.
First, generate simulated data repeatedly for each possible com-
bination of parameter values (here, effect size and standard devi-
ation), and compute the proportion of significant effects for each
parameter combination. This can be done by defining a function
that takes as input the number of simulations, sample size, effect
size, and standard deviation:

compute_power <- function(nsim = 1000, n = 10, effect = NULL,
stddev = NULL) {
temp_power <- rep(NA, nsim)
for (i in 1:nsim) {

y <- rnorm(n, mean = effect, sd = stddev)
temp_power[i] <- ifelse(abs(t.test(y)$statistic) >

2, 1, 0)
}
## return power calculation:
mean(temp_power)

}

Then, plot the power curves as a function of effect size and stan-
dard deviation, exactly as in Figure 2.10. Power calculations using
simulations are shown in Figure 2.11. It is clear that simulation-
based power estimation is going to be noisy; this is because each
time we are generating simulated data and then carrying out a
statistical test on it. This is no longer a closed-form mathemat-
ical calculation as done in power.t.test (this function simply
implements a formula for power calculation specified for this sim-
ple case). Because the power estimates will be noisy, we show a
smoothed lowess line for each effect size estimate.

In the above example, simulation-based power calculation
is overkill, and completely unnecessary because we have
power.t.test. However, the technique shown above will be ex-
tended and will become our bread-and-butter method once we



60 2 Hypothetical repeated sampling and the t-test

 

100 150 200 250 300

0.
08

0.
09

0.
10

0.
11

0.
12

Power curve (n=10) 
 using simulation

standard deviation

po
w

er

 

FIGURE 2.11: An illustration of a power curve using simulation,
for 10 participants, as a function of standard deviation, and three
estimates of the effect: 15, 10, and 20. The power curves are lowess-
smoothed.

switch to power calculations for complicated linear mixed models.
There, no closed form calculation can be done to compute power,
at least not without oversimplifying the model; simulation will be
the only practical way to calculate power.

It is important to appreciate the fact that power is a function; it
isn’t a single number. Because we can never be sure what the true
effect size is, or what the true standard deviation is, we should
always aim to report a power function, as a function of plausible
values of the relevant parameters.

2.4.4 The p-value

Continuing with our t-test example, the t.test function in R will
not only print out a t-value as shown above, but also a probability
known as a p-value. This is the probability of obtaining the ob-
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served t-value that we did, or some value more extreme than that,
conditional on the assumption that the null hypothesis is true.

We can compute the p-value “by hand”. This can be computed, as
done earlier, simply by calculating the area under the curve that
lies beyond the observed t-value. It is standard practice to take
the tail probability on both sides of the t-distribution.

(t_value <- t.test(y, mu = 450)$statistic)

## t
## 15.49

2 * pt(abs(t_value), df = n - 1, lower.tail = FALSE)

## t
## 8.529e-08

The area from both sides of the tail is taken because it is con-
ventional to do a so-called two-sided t-test: our null hypothesis is
that 𝜇 = 450, and our alternative hypothesis is two-sided: 𝜇 is
either less than 450 or 𝜇 is larger than 450. When we reject the
null hypothesis, we are accepting this alternative, that 𝜇 could be
some value other than 450. Notice that this alternative hypothesis
is remarkably vague; we would reject the null hypothesis regard-
less of whether the sample mean turns out to be 600 or -600, for
example. The practical implication is that the p-value gives us the
strength of the evidence against the null hypothesis; it doesn’t give
us evidence in favor of a specific alternative, such as saying that 𝜇
is positive or negative in sign. In psychology and allied disciplines,
whenever the p-value falls below 0.05, it is common practice to
write something along the lines that “there was reliable evidence
for the predicted effect.” This statement is technically incorrect; we
only ever have evidence against the null. By looking at the sample
mean and its sign, we are making a very big leap that we have
evidence for the specific sample mean we happened to get. As we
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will see below, the sample mean can be wildly far from the true
mean that produced the data.

One need not have done a two-sided alternative; one could have
defined the alternative to be one-sided. In that case, one would
compute only one side of the area under the curve. This kind of one-
sided test is not normally done, but one can imagine a situation
where a one-sided test is justified (for example, when only one sign
of the effect is possible, or if there is a strong theoretical reason
to expect only one particular sign—positive or negative—on an
effect). That said, in their scientific career, none of the authors of
this book have ever had occasion to use a one-sided test.

The p-value is always interpreted with reference to the pre-defined
Type I error. Conventionally, we reject the null if 𝑝 < 0.05. This is
because we set the Type I error at 0.05. Keep in mind that Type
I error and the p-value are two distinct things. Type I error is the
probability of your incorrectly rejecting the null under repeated
sampling. This is not the same thing as your p-value. The latter
will be obtained from a particular experiment, and will vary from
experiment to experiment; it is a random variable. Type I error is
a value we fix in advance.

2.4.4.1 *The distribution of the p-value under the null hypothesis

We have been talking about a continuous random variable as a
dependent measure, and have learnt about the standard two-sided
t-test, with a point null hypothesis. When we do such a test, we
usually use the p-value to decide whether to reject the null hypoth-
esis or not.

Sometimes, you will hear statisticians (e.g., Andrew Gelman on
his blog) say that the null hypothesis significance test is a specific
random number generator. What does that sentence mean? We
explain this point here.

It’s worth briefly reflecting on the fact that the p-value is a ran-
dom variable; call it 𝑍. The p-value is the cumulative distribution
function (CDF) of the random variable 𝑇 , which itself is a trans-
formation of the random variable ̄𝑌 :
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𝑇 = (�̄� − 𝜇)/(𝜎/√𝑛)
This random variable 𝑇 has some CDF 𝐹(𝑇 ). It is possible to show
that if a random variable 𝑍 = 𝐹(𝑇 ), i.e., if 𝑍 is the CDF for the
random variable 𝑇 , then 𝑍 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1).
This is an amazing fact. To get a grip on this, let’s first think
about the fact that when a random variable 𝑍 comes from a
𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1) distribution, then 𝑃(𝑍 < 𝑧) = 𝑧. Consider some
examples:

• when 𝑧 = 0, then 𝑃(𝑍 < 0) = 0;
• when 𝑧 = 0.25, then 𝑃(𝑍 < 0.25) = 0.25;
• when 𝑧 = 0.5, then 𝑃(𝑍 < 0.5) = 0.5;
• when 𝑧 = 0.75, then 𝑃(𝑍 < 0.75) = 0.75;
• when 𝑧 = 1, then 𝑃(𝑍 < 1) = 1.
Next, we will prove the above statement, that if a random variable
𝑍 = 𝐹(𝑇 ), i.e., if 𝑍 is the CDF for a random variable 𝑇 , then
𝑍 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1). The proof is actually quite astonishing and
even has a name: it’s called the probability integral transform.

Suppose that 𝑍 is the CDF of a random variable 𝑇 : 𝑍 = 𝐹(𝑇 ).
Then, it follows that 𝑃(𝑍 ≤ 𝑧) can be rewritten in terms of the
CDF of T: 𝑃(𝐹(𝑇 ) ≤ 𝑧). Now, if we apply the inverse of the CDF
(𝐹 −1) to both the left and right sides of the inequality, we get
𝑃(𝐹 −1𝐹(𝑇 ) ≤ 𝐹 −1(𝑧)). But 𝐹 −1𝐹(𝑇 ) gives us back 𝑇 ; this holds
because if we have a one-to-one onto function 𝑓(𝑥), then applying
the inverse 𝑓−1 to this function gives us back 𝑥.
The fact that 𝐹 −1𝐹(𝑇 ) gives us back 𝑇 means that we can rewrite
𝑃 (𝐹 −1𝐹(𝑇 ) ≤ 𝐹 −1(𝑧)) as 𝑃(𝑇 ≤ 𝐹 −1(𝑧)). But this probability is
simply the CDF 𝐹(𝐹 −1(𝑧)), which simplifies to 𝑧. This shows that
𝑃 (𝑍 ≤ 𝑧) = 𝑧; i.e., that the p-value has a uniform distribution
under the null hypothesis.

The above proof is restated below compactly:
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𝑃(𝑍 ≤ 𝑧) =𝑃(𝐹(𝑇 ) ≤ 𝑧)
=𝑃(𝐹 −1𝐹(𝑇 ) ≤ 𝐹 −1(𝑧))
=𝑃(𝑇 ≤ 𝐹 −1(𝑧))
=𝐹(𝐹 −1(𝑧))
=𝑧

(2.16)

It is for this reason that statisticians like Andrew Gelman peri-
odically point out that “the null hypothesis significance test is a
specific random number generator”. The practical implication of
this observation is that we should not place our theory develop-
ment exclusively at the feet of the p-value. As we discuss in this
book, other considerations (such as replicability, uncertainty of the
estimates, and power) are as or even more important.

2.4.5 Type M and S error in the face of low power

Beyond Type I and II error, there are also two other kinds of error
to be aware of. These are Type M and S error; both sources of
error are closely related to statistical power.

The terms Type M and S error were introduced by Gelman et al.
(2014), but the ideas has been in existence for some time (Hedges,
1984, Lane and Dunlap (1978)). Button et al. (2013) refer to Type
M and S error as the “winner’s curse” and “the vibration of effects.”
In related work, Ioannidis (2008) discusses refers to the vibration
ratio in the context of epidemiology.

Type S and M error can be illustrated with the following example.
Suppose your true effect size is believed to be 𝐷 = 15, then we can
compute (apart from statistical power) the following error rates,
which are defined as follows:

• Type S error: the probability that the sign of the effect is
incorrect, given that the result is statistically significant.

• Type M error: the expectation of the ratio of the absolute
magnitude of the effect to the hypothesized true effect size,
given that result is significant. Gelman and Carlin also call this
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the exaggeration ratio, which is perhaps more descriptive than
“Type M error”.

Suppose that our particular study has standard error 46, and sam-
ple size 37. And suppose that our true 𝜇 = 15, as stated above.
Then, we can compute statistical power, Type S and M error
through simulation in the following manner:

## probable effect size, derived from past studies:
D <- 15
## SE from the study of interest:
se <- 46
stddev <- se * sqrt(37)
nsim <- 10000
drep <- rep(NA, nsim)
for (i in 1:nsim) {

samp <- rnorm(37, mean = D, sd = stddev)
drep[i] <- mean(samp)

}

Power can be computed by simply determining the proportion of
times that the absolute observed t-value is larger than 2:

## power: the proportion of cases where we reject
## the null hypothesis correctly:
(pow <- mean(ifelse(abs(drep/se) > 2, 1, 0)))

## [1] 0.0608

Power is quite low here (we deliberately chose an example with
low power to illustrate Type S and M error).

Next, we figure out which of the cases are statistically significant
(which simulated values yield 𝑝 < 0.05). As a criterion, we use a
t-value of 2 to declare 𝑝 < 0.05; we could have done this more
precisely by working out an exact critical t-value.



66 2 Hypothetical repeated sampling and the t-test

## which results in drep are significant at
## alpha=0.05?
signif <- which(abs(drep/se) > 2)

Type S error is the proportion of significant cases with the wrong
sign (sign error), and Type M error is the ratio by the true effect
(of 𝜇 = 15) is exaggerated in those simulations that happened to
come out significant.

## Type S error rate | signif:
(types_sig <- mean(drep[signif] < 0))

## [1] 0.1645

## Type M error rate | signif:
(typem_sig <- mean(abs(drep[signif])/D))

## [1] 7.414

In this scenario, when power is approximately 6%, whenever we
get a significant effect, the probability of obtaining the wrong sign
is a whopping 16% and the effect is likely to be 7.4144 times larger
than its true magnitude. The practical implication is as follows.

When power is low, relying on the p-value (statistical significance)
to declare an effect as being present will be misleading because the
decision will be based on an overestimate of the effect (Type M
error), and even the sign of the effect could be wrong. This isn’t
just a theoretical point; it has real-world consequences for theory
development. For an example from psycholinguistics regarding this
point, see Vasishth et al. (2018).

Another useful way to visualize Type M and S error is through the
so-called funnel plot. As shown in Figure 2.12, estimates obtained
from low-powered studies will tend to be exaggerated (the lower
part of the funnel), and as power goes up, the effect estimates start
to cluster tightly around the true value of the effect.
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FIGURE 2.12: An illustration of a funnel plot. Shown are re-
peated samples of an effect estimate under different values of
power, where the true value of the effect is 15 (marked by the
vertical line). Significant effects are shaded gray. The lower the
power, the wider the fluctuation of the effect; under low power,
it is the exaggerated effects that end up statistically significant,
even though they are very biased relative to the true value. As
power goes up, the effect estimates start to cluster around the
true value, and significant effects are also accurate estimates of
the effect. Thus, low power leads to exaggerated estimates of the
effect, especially if the data are filtered by statistical significance.

What is important to appreciate here is the fact that significant
effects “point to the truth” just in case power is high; when power
is low, either null results will frequently be found even if the null
is false, and those results that turn out significant will be based
on Type M error.

In many fields, it is practically impossible to conduct a high-
powered study. What should one do in this situation? When re-
porting results that are likely based on an underpowered study,
the best approach ia to openly acknowledge the power limitation,
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to attempt to conduct a direct replication of the effect to estab-
lish robustness, and to attempt to synthesize the evidence from
existing knowlege (Cumming, 2014).

By direct replication, we mean that the study should be run multi-
ple times with the same materials and design but new participants,
to establish whether effect estimates in the original study and the
replication study are consistent with each other. Direct replications
stand in contrast to so-called conceptual replications, which are not
exact repetitions of the original design, but involve some further
or slightly different but related experimental manipulation. Con-
ceptual replications are also a very useful tool for cross-validating
the existence of an effect.

Direct replications will always differ from the original study in
some way or another—the lab may differ, the protocols might dif-
fer slightly, the experimenter is different, etc. Such between-study
variability is obviously unavoidable in direct-replication attempts,
but they are still worthwhile for establishing the existence of an
effect. To make the idea of establishing robustness through repli-
cation attempts, detailed examples of different kinds of replication
attempts will be presented in this book’s example data-sets.

2.4.6 Searching for significance

The NHST procedure is essentially a decision procedure: if 𝑝 <
0.05, we reject the null hypothesis; otherwise, we fail to reject the
null. Because significant results are easier to publish than non-
significant results, a common approach taken by researchers (in-
cluding the first author of this book, when he was a graduate
student) is to run the experiment and periodically check if statisti-
cal significance has been reached. The procedure can be described
as follows:

• The experimenter gathers 𝑛 data points, then checks for signif-
icance (is 𝑝 < 0.05 or not?).

• If the result is not significant, he gets more data (say, 𝑛 more
data points). Then he checks for significance, and repeats.
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Since time and money are limited, he might decide to stop collect-
ing data after some multiple of 𝑛 have been collected.

One can simulate different scenarios here. Suppose that 𝑛 is ini-
tially 15.
Under the standard assumptions, we set Type I error to be 0.05.
Let’s suppose that the null hypothesis that 𝜇 = 0 is in fact true,
and that standard deviation is 250.

## Standard properties of the t-test:
pvals <- NULL
tstat_standard <- NULL
n <- 15
nsim <- 10000
## assume a standard dev of 1:
stddev <- 250
mn <- 0
for (i in 1:nsim) {

samp <- rnorm(n, mean = mn, sd = stddev)
pvals[i] <- t.test(samp)$p.value
tstat_standard[i] <- t.test(samp)$statistic

}

Type I error rate is about 5%, consistent with our expectations:

round(table(pvals < 0.05)[2]/nsim, 2)

## TRUE
## 0.05

But the situation quickly deteriorates as soon as we adopt the
strategy outlined above. Below, we will also track the distribution
of the t-statistic.

pvals <- NULL
tstat <- NULL
## how many subjects can I run?
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upper_bound <- n * 6

for (i in 1:nsim) {
significant <- FALSE
x <- rnorm(n, mean = mn, sd = stddev) ## take sample
while (!significant & length(x) < upper_bound) {

## if not significant:
if (t.test(x)$p.value > 0.05) {

x <- append(x, rnorm(n, mean = mn, sd = stddev)) ## get more data
} else {

significant <- TRUE
} ## otherwise stop:

}
pvals[i] <- t.test(x)$p.value
tstat[i] <- t.test(x)$statistic

}

Now, Type I error rate is much higher than 5%:

round(table(pvals < 0.05)[2]/nsim, 2)

## TRUE
## 0.15

Figure 2.13 shows the distributions of the t-statistic in the stan-
dard case vs with the above stopping rule:

What is important to realize here is that the inflation in Type I er-
ror we observed above was due to the fact that the t-distribution
is no longer a t-distribution: we have bumps in the tails when
we use the flexible stopping rule, and these raise our Type I error.
This demonstrates why one should fix one’s sample size in advance,
based on a power analysis. One should not deploy a stopping rule
like the one above; if we used such a stopping rule, we are much
more likely to incorrectly declare a result as statistically signifi-
cant. There can be compelling reasons to adopt the peek-and-run
strategy; e.g., if one wants to avoid exposing patients to a treat-
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FIGURE 2.13: A comparison of the distribution of t-values with
an a priori fixed stopping rule, versus a flexible stopping rule con-
ditional on finding significance.

ment that might turn out to be harmful. In such situations, one
can run an adaptive experimental trial by correcting for Type I er-
ror inflation (Pocock, 2013). In this book, we will aim to develop a
workflow whereby the sample size is fixed through power analysis,
in advance of running an experiment.

2.5 The two-sample t-test vs. the paired t-test
In our running example above, we examined the case where we
have a single vector of data 𝑦. This led to the one-sample t-test.

Next, we consider a case where we have two vectors of data. The
data-set below is from Johnson (2011). Shown below are F1 for-
mant data (in Herz), productions of different vowels by male and
female speakers of different languages.

F1data <- read.table("data/F1_data.txt", header = TRUE)
F1data
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## female male vowel language
## 1 391 339 i W.Apache
## 2 561 512 e W.Apache
## 3 826 670 a W.Apache
## 4 453 427 o W.Apache
## 5 358 291 i CAEnglish
## 6 454 406 e CAEnglish
## 7 991 706 a CAEnglish
## 8 561 439 o CAEnglish
## 9 398 324 u CAEnglish
## 10 334 307 i Ndumbea
## 11 444 361 e Ndumbea
## 12 796 678 a Ndumbea
## 13 542 474 o Ndumbea
## 14 333 311 u Ndumbea
## 15 343 293 i Sele
## 16 520 363 e Sele
## 17 989 809 a Sele
## 18 507 367 o Sele
## 19 357 300 u Sele

Notice that the male and female values can be seen as dependent
or paired: each row belongs to the same vowel and language. Nev-
ertheless, we can compare males’ and females’ F1 frequencies, com-
pletely ignoring this paired nature of the data. The t-test does not
“know” whether these data are paired or not—it is the researcher’s
job to make sure that model assumptions are met.

Let’s ignore the paired nature of the data for now, and treat the
two vectors as independent vectors. Suppose that our null hypoth-
esis is that there is no difference between the mean F1’s for males
(𝜇𝑚) and females (𝜇𝑓). Now, our null hypothesis is 𝐻0 ∶ 𝜇𝑚 = 𝜇𝑓
or 𝐻0 ∶ 𝜇𝑚 − 𝜇𝑓 = 𝛿 = 0.
This kind of statistical test calls for a two-sample t-test. Note here
that we are assuming that both the male and female F1 scores
have equal variance.

The function call in R for a two-sample t-test is shown below:
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t.test(F1data$female, F1data$male, paired = FALSE,
var.equal = TRUE)

##
## Two Sample t-test
##
## data: F1data$female and F1data$male
## t = 1.5, df = 36, p-value = 0.1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -30.07 217.54
## sample estimates:
## mean of x mean of y
## 534.6 440.9

This t-test is computing the following t-statistic:

𝑡 = 𝑑 − (𝜇𝑚 − 𝜇𝑓)
𝑆𝐸 = 𝑑 − 0

𝑆𝐸 (2.17)

where 𝑑 is the difference between the two sample means; the rest
of the terms we are familiar with. SE is the standard error of the
sampling distribution of the difference between the means.

We will now do this calculation “by hand”. The only new things
are the formula for the SE calculation, and the degrees of freedom
for t-distribution (2 × 𝑛 − 2) = 36.
The standard error for the difference in the means in the two-
sample t-test is computed using this formula:

𝑆𝐸𝛿 = √�̂�2𝑚
𝑛𝑚

+
�̂�2

𝑓
𝑛𝑓

(2.18)

Here, �̂�𝑚 is estimate of the standard deviation for males, and �̂�𝑓
for the females; the 𝑛 are the respective sample sizes.
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n_m <- n_f <- 19
## difference of sample means:
d <- mean(F1data$female) - mean(F1data$male)
(SE <- sqrt(var(F1data$male)/n_m + var(F1data$female)/n_f))

## [1] 61.04

(observed_t <- (d - 0)/SE)

## [1] 1.536

## p-value:
2 * (1 - pt(observed_t, df = 36))

## [1] 0.1334

The output of the two-sample t-test and the hand-calculation
above match up.

Now consider what will change once we take into account the fact
that the data are paired. The two-sample t-test now becomes a
so-called paired t-test.

For such paired data, the null hypothesis is as before: 𝐻0 ∶ 𝛿 = 0.
But since each row in the data-frame is paired (from the same
vowel+language), we subtract the vector row-wise, and get a new
vector 𝑑 (not a single number 𝑑 as in the two-sample t-test) with
the row-wise differences. Then, we just do the familiar one-sample
test we saw earlier:

d <- F1data$female - F1data$male
t.test(d)

##
## One Sample t-test
##
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## data: d
## t = 6.1, df = 18, p-value = 9e-06
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 61.48 125.99
## sample estimates:
## mean of x
## 93.74

An alternative syntax for the paired t-test explicitly feeds the two
paired vectors into the function, but one must explicitly specify
that they are paired, otherwise the test is a two-sample (i.e., un-
paired) t-test:

t.test(F1data$female, F1data$male, paired = TRUE)

##
## Paired t-test
##
## data: F1data$female and F1data$male
## t = 6.1, df = 18, p-value = 9e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 61.48 125.99
## sample estimates:
## mean of the differences
## 93.74

Incidentally, notice that the p-value in the paired t-test is statisti-
cally significant, unlike the two-sample t-test above. The null hy-
pothesis is the same in both tests, but the significance level leads
to different conclusions.

Which analysis is correct, the two-sample t-test or the paired t-
test? It all depends on your assumptions about what the data
represent. If you consider the data paired, for the reasons given
above, then a paired test is called for. If the pairing (the same
vowel and language in each row) is unlikely to create a dependency
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between the two data points in a row (here, domain knowledge is
required), we can treat this as unpaired data.

Next, we look at some perhaps subtle points about the paired t-
test.

2.5.1 Common mistakes involving the t-test

The paired t-test assumes that each row in the data-frame is inde-
pendent of the other rows. This implies that the data-frame cannot
have more than one row for a particular pair. In other words, the
data-frame cannot have repeated measurements spread out across
rows.

For example, doing a paired t-test on this hypothetical data-frame
would be incorrect:

female male vowel language
391 339 i W.Apache
400 320 i W.Apache

⋮ ⋮ ⋮ ⋮

Why? Because the assumption is that each row is independent
of the others. This assumption is violated here (this is assuming
that repeating the vowel from the same language will lead to some
commonalities between the two repetitions).

Consider another hypothetical example. In the table below, from
subject 1 we see two data points each for condition a and for
condition b.

condition a condition b subject item
391 339 1 1
400 320 1 2

⋮ ⋮ ⋮ ⋮

Here, we again have repeated measurements from subject 1. The
independence assumption is violated.

How to proceed when we have repeated measurements from each
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subject or each item? The solution is to aggregate the data so that
each subject (or item) has only one value for each condition.

This aggregation allows us to meet the independence assumption
of the t-test, but it has a potentially huge drawback: it pretends
we have one measurement from each subject for each condition.
Later on we will learn how to analyze unaggregated data, but if
we want to do a paired t-test, we have no choice but to aggregate
the data in this way.

A fully worked example will make this clear. We have repeated
measures data on subject versus object relative clauses in English.
The data are from a self-paced reading study reported in Grodner
and Gibson (2005), their experiment 1. A theoretical prediction is
that in English, object relatives are harder to read than subject
relatives, in the relative clause verb region. We want to test this
prediction.

First, load the data containing reading times from the region of
interest (the relative clause verb):

gg05e1 <- read.table("data/grodnergibsonE1crit.txt",

header=TRUE)

head(gg05e1)

## subject item condition rawRT
## 6 1 1 objgap 320
## 19 1 2 subjgap 424
## 34 1 3 objgap 309
## 49 1 4 subjgap 274
## 68 1 5 objgap 333
## 80 1 6 subjgap 266

We have repeated measurements for each condition from the sub-
jects, and from items. You can establish this by using the xtabs
command. Notice that there are no missing data points:
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t(xtabs(~subject + condition, gg05e1))

## subject
## condition 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
## objgap 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
## subjgap 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
## subject
## condition 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
## objgap 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
## subjgap 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
## subject
## condition 34 35 36 37 38 39 40 41 42
## objgap 8 8 8 8 8 8 8 8 8
## subjgap 8 8 8 8 8 8 8 8 8

t(xtabs(~item + condition, gg05e1))

## item
## condition 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
## objgap 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21
## subjgap 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21
## item
## condition 16
## objgap 21
## subjgap 21

It is important to stress once more that it is the researcher’s re-
sponsibility to make sure that the t-test’s assumptions are met.
For example, one could fit a two-sample t-test to the data as pro-
vided. The two-sample t-test can be implemented using the syntax
shown below:

t.test(rawRT ~ condition, gg05e1)

##
## Welch Two Sample t-test
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##
## data: rawRT by condition
## t = 3.8, df = 431, p-value = 2e-04
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 48.98 155.59
## sample estimates:
## mean in group objgap mean in group subjgap
## 471.4 369.1

This t-test is incorrect for several reasons, but the most egregious
error here is that the data are paired (each subject delivers data for
both conditions), and that property of the data is being ignored.

Another common mistake is to do a paired t-test on the data as
provided. Again, the t.test function will happily return a meaning-
less result:

t.test(rawRT ~ condition, paired = TRUE, gg05e1)

##
## Paired t-test
##
## data: rawRT by condition
## t = 4, df = 335, p-value = 8e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 51.98 152.59
## sample estimates:
## mean of the differences
## 102.3

Here, the degrees of freedom indicate that we have fit the incorrect
model. There are 42 subjects and 16 items, and the presentation
of items to subjects uses a Latin square design (each subject sees
only one condition per item). The 335 degrees of freedom come
from 42 × 8 = 336 data points, minus one. Why do we say 42 × 8
and not 42 × 16? That is because each subject will return eight
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differences in reading time for each condition: each subject gives
us eight subject-relative data points and eight object-relative data
points.

For each of the 42 subjects, the t-test function internally creates
a vector of eight data points of subject relatives and subtracts the
vector of eight data points of object relatives. That is how we end
up with 42 × 8 = 336 data points.

These 336 data points are assumed by the t-test to be independent
of each other; but this cannot be the case because each subject
delivers eight data points for each condition; these are obviously
dependent (correlated) because they come from the same subject.

What is needed is a single data-point for each subject and con-
dition, and for each item and condition. In order to conduct the
t-test, aggregation of the data by subjects and by items is neces-
sary.

Consider the by-subjects aggregation procedure below. Now we
have only one data-point for each condition and subject:

bysubj <- aggregate(rawRT ~ subject + condition, mean,
data = gg05e1)

t(xtabs(~subject + condition, bysubj))

## subject
## condition 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
## objgap 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## subjgap 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## subject
## condition 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
## objgap 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## subjgap 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## subject
## condition 34 35 36 37 38 39 40 41 42
## objgap 1 1 1 1 1 1 1 1 1
## subjgap 1 1 1 1 1 1 1 1 1
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Notice that the data are correlated: the longer the subject relative
clause data from a participant, the longer their object relative
clause data:

SRdata <- subset(bysubj, condition == "subjgap")$rawRT
ORdata <- subset(bysubj, condition == "objgap")$rawRT
plot(SRdata, ORdata)
abline(lm(ORdata ~ SRdata))
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cor(SRdata, ORdata)

## [1] 0.5876

Returning to the t-test, by aggregating the data the t-test’s as-
sumptions are met, and the degrees of freedom for this by-subjects
analysis are now correct (42 − 1 = 41):

t.test(rawRT ~ condition, bysubj, paired = TRUE)

##
## Paired t-test
##
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## data: rawRT by condition
## t = 3.1, df = 41, p-value = 0.003
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 35.85 168.72
## sample estimates:
## mean of the differences
## 102.3

Similar to the by-subjects aggregation done above, one could do
a by-items aggregation and then a by-items t-test (What should
be the degrees of freedom for the by-items analysis? There are 16
items in this data-set). This is left as an exercise for the reader.

The paired t-test illustrated above is actually not the best way to
analyze this data-set, because it ignores the fact that each subject
delivers not one but eight data points per condition. Each subject’s
repeated measurements will introduce a source of variance, but this
source of variance is being suppressed in this t-test, leading to a
possibly over-enthusiastic t-value. In order to take this variability
into account, we must switch to the linear mixed model. But before
we get to the linear mixed model, we have to consider the linear
model. The next chapter turns to this topic.

2.6 Exercises
2.6.1 Computing the p-value

A paired t-test is done with data from 10 participants. The t-value
from the test is 2.1. What is the p-value associated with a two-sided
null hypothesis test?

2.6.2 Computing the t-value

If the p-value from a two-sided null hypothesis test had been 0.09,
what would be the associated absolute t-value (i.e., ignoring the
sign on the t-value)? The number of participants is 10, as above.
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2.6.3 Type I and II error

Given that Type I error is 0.01; what is the highest value possible
for Type II error?
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Linear models and linear mixed models

3.1 From the t-test to the linear (mixed) model
We begin with the Grodner and Gibson (2005) self-paced reading
data we saw in the previous chapter. Load the data and compute
the means by condition at the relative clause verb:

gg05e1 <- read.table("data/grodnergibsonE1crit.txt",
header = TRUE)

means <- round(with(gg05e1, tapply(rawRT, IND = condition,
mean)))

means

## objgap subjgap
## 471 369

As predicted by theory, object relatives (labeled objgap here) are
read slower than subject relatives (labeled subjgap).

As discussed in the previous chapter, a paired t-test can be done
to evaluate whether we have evidence against the null hypothesis
that object relatives and subject relatives have identical reading
times. However, we have to aggregate the data by subjects and by
items first.

bysubj <- aggregate(rawRT ~ subject + condition, mean,
data = gg05e1)

byitem <- aggregate(rawRT ~ item + condition, mean,

85
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data = gg05e1)
t.test(rawRT ~ condition, paired = TRUE, bysubj)$statistic

## t
## 3.109

t.test(rawRT ~ condition, paired = TRUE, byitem)$statistic

## t
## 3.754

What these two t-tests show is that both by subjects and by items,
there is strong evidence against the null hypothesis that the object
and relatives have identical reading times.

Interestingly, exactly the same t-values can be obtained by running
the following commands, which implement a kind of linear model
called the linear mixed model:

library(lme4)

## Loading required package: Matrix

m0lmersubj <- lmer(rawRT ~ condition + (1 | subject),
bysubj)

summary(m0lmersubj)$coefficients

## Estimate Std. Error t value
## (Intercept) 471.4 31.13 15.143
## conditionsubjgap -102.3 32.90 -3.109

m0lmeritem <- lmer(rawRT ~ condition + (1 | item),
byitem)

summary(m0lmeritem)$coefficients
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## Estimate Std. Error t value
## (Intercept) 471.4 20.20 23.336
## conditionsubjgap -102.3 27.25 -3.754

The signs of the t-values are the opposite to that of the paired
t-tests above; the reason for that will presently become clear.

Our goal in this chapter is to understand the above model involving
the lmer function, using the familiar paired t-test as a starting
point.

For now, consider only the by-subject analysis. Given the sample
means shown above for the two conditions, we can rewrite our best
guess about how the object and subject relative clause reading time
distributions were generated:

• Object relative: 𝑁𝑜𝑟𝑚𝑎𝑙(471 − 102 × 0, �̂�)
• Subject relative: 𝑁𝑜𝑟𝑚𝑎𝑙(471 − 102 × 1, �̂�)
Note that the two distributions for object and subject relative
are assumed to be independent. This assumed independence is
expressed by the fact that we define two separate Normal distri-
butions, one for object relatives and the other for subject relatives.
We saw earlier that this independence assumption of independence
does not hold in our data, because we have one data point for each
RC type from the same subject. However, for now we will ignore
this detail; we will fix this shortcoming later.

The interesting point to notice here is that the mean for the object
and subject relatives’ distributions can be rewritten as a sum of
two terms. A completely equivalent way to express the fact that
object relatives are coming from a 𝑁𝑜𝑟𝑚𝑎𝑙(471, �̂�) is to say that
each object relative data-point can be described by the following
equation:

𝑦 = 471 + −102 × 0 + 𝜀 where 𝜀 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, �̂�) (3.1)

Similarly, the subject relative’s distribution can be written as being
generated from:
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𝑦 = 471 − 102 × 1 + 𝜀 where 𝜀 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, �̂�) (3.2)

In these data, the parameter �̂� is estimated to be 213. How do
we know what this estimate is? This parameter’s estimate can be
derived from the by-subjects t-test output above: The observed
t-value is

𝑜𝑏𝑠.𝑡 = ̄𝑥
𝑠/√𝑛 (3.3)

Solving for 𝑠:

𝑠 = ̄𝑥 × √𝑛/𝑜𝑏𝑠.𝑡 = −103 ×
√

42/ − 3.109 = 213 (3.4)

So, our model for the relative clause data consists of two equations:

Object relatives:

𝑦 = 471 − 102 × 0 + 𝜀 where 𝜀 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 213) (3.5)

Subject relatives:

𝑦 = 471 − 102 × 1 + 𝜀 where 𝜀 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 213) (3.6)

The above statements describe a generative process for the data.

Given such a statement about the generative process, we can ex-
press the estimated mean reading times for each RC type as follows.
We can ignore the term 𝜀 because it has mean 0 (we stipulate this
when we specify that 𝜀 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎)).
Mean object relative reading times:

Mean OR RT = 471 − 102 × 0 (3.7)

Mean subject relative reading times:
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Mean SR RT = 471 − 102 × 1 (3.8)

There is a function in R, the lm() function, which expresses the
above statistical model, and prints out exactly the same numerical
values that we used above:

summary(m0 <- lm(rawRT ~ condition, bysubj))$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 471.4 31.13 15.143 1.795e-25
## conditionsubjgap -102.3 44.02 -2.324 2.263e-02

The linear model function lm() prints out two coefficients, 471 and
−102, that help express the mean reading times for object and sub-
ject relative data, using a simple coding scheme: object relatives
are coded as 0, and subject relatives are coded as 1. This coding
scheme is not visible to the user, but is represented internally in
R. The user can see the coding for each condition level by typing:

## make sure that the condition column is of type
## factor:
bysubj$condition <- factor(bysubj$condition)
contrasts(bysubj$condition)

## subjgap
## objgap 0
## subjgap 1

We will discuss coding in detail in a later chapter, but right now the
simple 0,1 coding above—called treatment contrasts—is enough
for our purposes.

Thus, what the linear model above gives us is two numbers: the
mean object relative reading time (471), and the difference be-
tween object and subject relative (-102). We can extract the two
coefficients by typing:
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round(coef(m0))

## (Intercept) conditionsubjgap
## 471 -102

In the vocabulary of linear modeling, the first number is called
the intercept, and the second one is called the slope. Note that the
meaning of the intercept and slope depends on the ordering of the
factor levels. We can make the sample mean of the subject relative
represent the intercept:

## reverse the factor level ordering:
bysubj$condition <- factor(bysubj$condition, levels = c("subjgap",

"objgap"))
contrasts(bysubj$condition)

## objgap
## subjgap 0
## objgap 1

Now, the intercept is the mean of the subject relatives, and the
slope is the difference between object and subject relative read-
ing time. Note that the sign of the t-value has changed—the sign
depends on the contrast coding.

m1a <- lm(rawRT ~ condition, bysubj)
summary(m1a)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 369.1 31.13 11.857 1.819e-19
## conditionobjgap 102.3 44.02 2.324 2.263e-02

Let’s switch back to the original factor level ordering:

bysubj$condition <- factor(bysubj$condition, levels = c("objgap",



3.1 From the t-test to the linear (mixed) model 91

"subjgap"))
contrasts(bysubj$condition)

## subjgap
## objgap 0
## subjgap 1

In mathematical form, the model can now be stated as a single
equation:

𝑟𝑎𝑤𝑅𝑇 = 𝛽0 + 𝛽1𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 + 𝜀 (3.9)

where

• condition is a 0,1 coded vector, with object relatives coded as
0, and subject relatives coded as 1.

• 𝛽0 is the mean for the object relative (which is coded as 0)
• 𝛽1 is the amount by which the object relative mean must be

changed to obtain the mean for the subject relative.
• 𝜀 is the noisy variation from trial to trial around the means for

the two conditions, represented by 𝑁𝑜𝑟𝑚𝑎𝑙(0, 213).
The null hypothesis of scientific interest here is always with refer-
ence to the slope, that the difference in means between the two
relative clause types 𝛽1 is:

𝐻0 ∶ 𝛽1 = 0
The t-test value printed out in the linear model is simply the fa-
miliar t-test formula in action:

𝑜𝑏𝑠.𝑡 = 𝛽1 − 0
𝑆𝐸 (3.10)

The intercept also has a null hypothesis associated with it, namely
that 𝐻0 ∶ 𝛽0 = 0. However, this null hypothesis test is of absolutely
no interest for us. This hypothesis test is reported by the lm()
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function only because the intercept is needed for technical reasons,
to be discussed later.

The contrast coding mentioned above determines the meaning of
the 𝛽 parameters:

bysubj$condition <- factor(bysubj$condition, levels = c("objgap",
"subjgap"))

contrasts(bysubj$condition)

## subjgap
## objgap 0
## subjgap 1

When discussing linear models, we will make a distinction between
the unknown true means 𝛽0, 𝛽1 and the estimated mean from the
data ̂𝛽0, ̂𝛽1. The estimates that we have from the data are:

• Estimated mean object relative processing time: ̂𝛽0 = 471 .
• Estimated mean subject relative processing time: ̂𝛽0 + ̂𝛽1 =

471 + −102 = 369.

3.2 Sum coding
We have established so far that the mathematical form of the
model is:

𝑟𝑡 = 𝛽0 + 𝛽1𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 + 𝜀 (3.11)

We can change the contrast coding of the condition vector in the
following way. First, recode the levels of the condition column as
shown below.

## new contrast coding:
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bysubj$cond <- ifelse(bysubj$condition == "objgap",
1, -1)

Now, the two conditions are coded not as 0, 1 but as -1 and +1:

xtabs(~cond + condition, bysubj)

## condition
## cond objgap subjgap
## -1 0 42
## 1 42 0

With this coding, the model parameters have a different meaning:

m1 <- lm(rawRT ~ cond, bysubj)
round(coef(m1))

## (Intercept) cond
## 420 51

• The intercept now represents the grand mean processing time:
̂𝛽0 = 420.

• The mean object relative processing time is now: ̂𝛽0 + ̂𝛽1 × 1 =
420 + 51 = 471.

• The mean subject relative processing time is: ̂𝛽0 + ̂𝛽1 × (−1) =
420 − 51 = 369.

This kind of parameterization is called sum-to-zero contrast or
more simply sum contrast coding. This is the coding we will use
most frequently in this book. We will elaborate on contrast cod-
ing in a later chapter; there, the advantages of sum coding over
treatment coding will become clear. For now, it is sufficient to
understand that one can reparametrize the model using different
contrast codings, and that such a reparametrization impacts the
interpretation of the parameters.

With sum coding, the null hypothesis for the slope is
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𝐻0 ∶ 1×𝜇𝑜𝑏𝑗 + (−1) × 𝜇𝑠𝑢𝑏𝑗 = 0 (3.12)

The sum contrast coding of +1 standing for object relatives and -1
standing for subject relatives in the linear model directly refer to
the ±1 coefficients in the null hypothesis above. Now the model is
as follows.

Object relative reading times:

𝑟𝑡 = 420×1 + 51×1 + 𝜀 (3.13)

Subject relative reading times:

𝑟𝑡 = 420×1 + 51×(−1) + 𝜀 (3.14)

One could write it in a single line as:

𝑟𝑡 = 420 + 51 × 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 + 𝜀 (3.15)

3.3 Checking model assumptions
It is an assumption of the linear model that the residuals are (ap-
proximately) normally distributed, That is what the statement
𝜀 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎) implies. It is important to check that model
assumptions are approximately satisfied; this is because the null
hypothesis significance testing procedure requires approximate nor-
mality of residuals.

Here is how we can check whether this normality assumption is
met:

## extract residuals:
res.m1 <- residuals(m1)
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Compare the residuals to the quantiles of the standard normal
distribution (𝑁𝑜𝑟𝑚𝑎𝑙(0, 1)):

library(car)

## Loading required package: carData

## Registered S3 methods overwritten by 'car':
## method from
## influence.merMod lme4
## cooks.distance.influence.merMod lme4
## dfbeta.influence.merMod lme4
## dfbetas.influence.merMod lme4

##
## Attaching package: 'car'

## The following object is masked from 'package:purrr':
##
## some

## The following object is masked from 'package:dplyr':
##
## recode

qqPlot(res.m1)
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## [1] 37 33

When the normality assumption is met, the residuals will align
perfectly with the quantiles of the standard normal distribution,
resulting in a straight diagonal line in the above plot. When the
normality assumption is not met, the line will tend to curve away
from the diagonal.

In the above case, a log transform of the data improves the nor-
mality of residuals:

m1log <- lm(log(rawRT) ~ cond, bysubj)
qqPlot(residuals(m1log))
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The estimates of the parameters are now in the log scale:

• The estimated grand mean processing time: ̂𝛽0 = 5.9488.
• The estimated mean object relative processing time: ̂𝛽0 + ̂𝛽1 =

5.9488 + 0.0843 = 6.0331.
• The estimated mean subject relative processing time: ̂𝛽0 − ̂𝛽1 =

5.9488 − 0.0843 = 5.8645.
The model does not change, only the scale does:

log 𝑟𝑡 = 𝛽0 + 𝛽1𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 + 𝜀 (3.16)

Now, the intercept and slope can be used to compute the reading
time in the two conditions:

• Estimated mean object relative reading time: ̂𝛽0 + ̂𝛽1 =
5.9488 + 0.0843 = 6.0331.

• Estimated mean subject relative reading time: ̂𝛽0 − ̂𝛽1 =
5.9488 − 0.0843 = 5.8645.

Note that because 𝑒𝑥𝑝(𝑙𝑜𝑔(𝑟𝑡)) = 𝑟𝑡, to get the mean estimates
on the raw ms scale, we just need to exponentiate both sides of
the equation:
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𝑒𝑥𝑝(log 𝑟𝑡) = 𝑒𝑥𝑝(𝛽0 + 𝛽1𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) (3.17)

This approach gives us the following estimates on the ms scale:

• Estimated mean object relative reading time: 𝑒𝑥𝑝( ̂𝛽0 + ̂𝛽1) =
𝑒𝑥𝑝(5.9488 + 0.0843) = 417.

• Estimated mean subject relative reading time: 𝑒𝑥𝑝( ̂𝛽0 − ̂𝛽1) =
𝑒𝑥𝑝(5.9488 − 0.0843 = 352.

The difference in reading time is 417-352=65 ms (cf. 102 ms from
the model using the raw scale). The larger estimate based on the
raw scale is less realistic, and we will see later that the large dif-
ference between the two conditions is driven by a few extreme,
influential values.

In a later chapter, we will return to the issue of which transform
to choose, and what the options are that are available for different
situations.

3.4 From the paired t-test to the linear mixed model
One interesting point to notice is that the observed t-value of the
paired t-test and the t-test printed out by the linear model don’t
match:

t.test(rawRT ~ condition, bysubj, paired = TRUE)$statistic

## t
## 3.109

round(summary(m0)$coefficients, 2)[, c(1:3)]

## Estimate Std. Error t value
## (Intercept) 471.4 31.13 15.14
## conditionsubjgap -102.3 44.02 -2.32
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This is because the linear model implements the unpaired (i.e., two
sample) t-test:

summary(lm(rawRT ~ condition, bysubj))

##
## Call:
## lm(formula = rawRT ~ condition, data = bysubj)
##
## Residuals:
## Min 1Q Median 3Q Max
## -303.4 -116.4 -51.6 49.1 853.3
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 471.4 31.1 15.14 <2e-16
## conditionsubjgap -102.3 44.0 -2.32 0.023
##
## Residual standard error: 202 on 82 degrees of freedom
## Multiple R-squared: 0.0618,Adjusted R-squared: 0.0503
## F-statistic: 5.4 on 1 and 82 DF, p-value: 0.0226

round(t.test(rawRT ~ condition, bysubj, paired = FALSE)$statistic,
2)

## t
## 2.32

The paired t-test has an equivalent in the linear modeling frame-
work: the linear mixed model. We turn next to this extension of
the simple linear model. The command corresponding to the paired
t-test in the linear modeling framework is:

m0.lmer <- lmer(rawRT ~ condition + (1 | subject),
bysubj)

summary(m0.lmer)$coefficients
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## Estimate Std. Error t value
## (Intercept) 471.4 31.13 15.143
## conditionsubjgap -102.3 32.90 -3.109

To understand the connection between the paired t-test and the
above command, it is necessary to consider how a paired t-test is
assembled.

First, some background. If you have two random variables that
have correlation 𝜌, the variance of the difference between the two
random variables is:

𝑉 𝑎𝑟(𝑋1 − 𝑋2) = 𝑉 𝑎𝑟(𝑋1) + 𝑉 𝑎𝑟(𝑋2) − 2 × 𝐶𝑜𝑣(𝑋1, 𝑋2) (3.18)

𝐶𝑜𝑣(𝑋1, 𝑋2) is the covariance between the two random variables
and is defined as:

𝐶𝑜𝑣(𝑋1, 𝑋2) = 𝜌√𝑉 𝑎𝑟(𝑋1)√𝑉 𝑎𝑟(𝑋2) (3.19)

You can find the proofs of the above assertions in books like Rice
(1995).

As discussed earlier, a paired t-test is used when you have paired
data from subject 𝑖 = 1, ..., 𝑛 in two conditions, say conditions 1
and 2. Let’s write the data as two vectors 𝑋1, 𝑋2. Because the
pairs of data points are coming from the same subject, they are
correlated with some correlation 𝜌. Assume that both conditions
1 and 2 have standard deviation 𝜎.
To make this discussion concrete, let’s generate some simulated
bivariate data that are correlated. Assume that 𝜎 = 1, 𝜌 = 0.5,
and that the data are balanced.

library(MASS)
samplesize <- 12
mu <- c(0.3, 0.2)
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rho <- 0.5
stddev <- 1
Sigma <- matrix(stddev, nrow = 2, ncol = 2) + diag(2)
Sigma <- Sigma/2
Sigma

## [,1] [,2]
## [1,] 1.0 0.5
## [2,] 0.5 1.0

## simulated data:
x <- mvrnorm(n = samplesize, mu = mu, Sigma = Sigma,

empirical = TRUE)
head(x)

## [,1] [,2]
## [1,] -0.4241 -1.1746
## [2,] 0.4285 0.1175
## [3,] -1.1445 -1.6417
## [4,] 2.1234 0.1617
## [5,] -0.9182 0.3638
## [6,] 0.6915 1.6569

n <- samplesize
x1 <- x[, 1]
x2 <- x[, 2]
x1

## [1] -0.4241 0.4285 -1.1445 2.1234 -0.9182 0.6915
## [7] -0.3609 0.2910 0.9116 1.8084 0.4441 -0.2508

x2

## [1] -1.17458 0.11751 -1.64174 0.16166 0.36377
## [6] 1.65688 1.12933 -0.26363 1.21378 1.22185
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## [11] -0.41870 0.03387

To carry out the paired t-test, we need to know the variance of
𝑋1 − 𝑋2 because the t-statistic will be:

𝑡𝑛−1 = 𝑋1 − 𝑋2
√𝑉 𝑎𝑟(𝑋1 − 𝑋2)/𝑛

(3.20)

Now,

𝑉 𝑎𝑟(𝑋1 − 𝑋2) = 𝜎2 + 𝜎2 − 2𝜌𝜎𝜎 = 2𝜎2(1 − 𝜌) (3.21)

Now let’s compute the t-statistic using the above formula. Let the
actual data vectors be 𝑥1, 𝑥2.

𝑡𝑛−1 = 𝑚𝑒𝑎𝑛(𝑥1) − 𝑚𝑒𝑎𝑛(𝑥2)
√𝑉 𝑎𝑟(𝑋1 − 𝑋2)/𝑛

(3.22)

This simplifies to:

𝑡𝑛−1 = 𝑚𝑒𝑎𝑛(𝑥1) − 𝑚𝑒𝑎𝑛(𝑥2)
√2𝜎2(1 − 𝜌)/𝑛

(3.23)

Now compare the paired t-test output and the by-hand calculation:

t.test(x1, x2, paired = TRUE)$statistic

## t
## 0.3464

(mean(x1) - mean(x2))/sqrt((2 * stddev^2 * (1 - rho))/n)

## [1] 0.3464
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The linear mixed model we present next will fit exactly the same
model as in the paired t-test above. To see this, suppose we have 𝑖
subjects and 𝑗 = 1, 2 conditions. For simplicity, assume that each
subject sees each condition once (e.g., the by-subjects aggregated
English relative clause data), so we have two data points from each
subject. In other words, the data are paired.

Then, for condition 1, the dependent variable can be described by
the equation:

𝑦𝑖1 = 𝛽0 + 𝑢0𝑖 + 𝜀𝑖1

Here, 𝛽0 is the mean reading time, and 𝜀 is the usual residual error
term. The interesting new term is 𝑢0𝑖. This is the adjustment to
the mean reading time for subject 𝑖. That is, if some subject is
slower than average, 𝑢0𝑖 will be a positive number; if a subject
is faster than average, then that subject’s adjustment 𝑢0𝑖 will be
negative in sign; and if a subject has exactly the same reading time
as the mean for all subjects, then 𝑢0𝑖 for that subject will be 0.

Similarly, for condition 2, the dependent variable is described by
the equation:

𝑦𝑖2 = 𝛽0 + 𝛿 + 𝑢0𝑖 + 𝜀𝑖2

Here, 𝛿 is the additional time taken to process condition 2 (thus,
this is the treatment contrast coding we saw earlier in this chap-
ter).

If we subtract the equation for condition 2 from the equation for
condition 1, the resulting equation is:

𝑑𝑖 = 𝑦𝑖1 − 𝑦𝑖2 = 𝛿 + (𝜀𝑖1 − 𝜀𝑖2)
The expectation of 𝑑𝑖 is 𝛿 because the expectation of the 𝜀 terms
is 0 (we set up the model such that 𝜀 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎)).
Now, assuming that the error terms are correlated with correlation
𝜌, the result presented at the beginning of this section applies:

𝑉 𝑎𝑟(𝑦𝑖1 − 𝑦𝑖2) = 𝜎2 + 𝜎2 − 2𝜌𝜎2 = 2𝜎2(1 − 𝜌) (3.24)
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The generative distribution for 𝑑𝑖, the pairwise differences in the
two conditions, is

𝑑 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝛿, √2𝜎2(1 − 𝜌)) (3.25)

But that is exactly the same standard deviation as the one used
in the paired t-test.

So, the paired t-test will deliver exactly the same t-score as the
above linear mixed model.

Let’s check that this is true using our simulated data. In the code
below, the term (1|subj) is the adjustment by subject to the
intercepts—the term 𝑢0𝑖 above.

library(lme4)
dat <- data.frame(y = c(x1, x2), cond = rep(letters[1:2],

each = n), subj = rep(1:n, 2))
dat$cond <- factor(dat$cond)
contrasts(dat$cond) <- contr.sum(2)
contrasts(dat$cond)

## [,1]
## a 1
## b -1

summary(m <- lmer(y ~ cond + (1 | subj), dat))

## Linear mixed model fit by REML ['lmerMod']
## Formula: y ~ cond + (1 | subj)
## Data: dat
##
## REML criterion at convergence: 65.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.226 -0.533 0.032 0.487 1.737
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##
## Random effects:
## Groups Name Variance Std.Dev.
## subj (Intercept) 0.5 0.707
## Residual 0.5 0.707
## Number of obs: 24, groups: subj, 12
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 0.250 0.250 1.00
## cond1 0.050 0.144 0.35
##
## Correlation of Fixed Effects:
## (Intr)
## cond1 0.000

The t-statistic from the linear mixed model is exactly the same as
that from the paired t-test.

With this as background, we are ready to look at linear mixed
models in detail.

3.5 Linear mixed models
We return to our subject and object relative clause data from En-
glish (Grodner and Gibson, Expt 1). First we load the data as
usual, define relative clause type as a sum coded predictor, and
create a new column called so that represents the contrast cod-
ing (±1 sum contrasts), and a column that holds log-transformed
reading time.

gg05e1 <- read.table("data/grodnergibsonE1crit.txt",
header = TRUE)

gg05e1$so <- ifelse(gg05e1$condition == "objgap", 1,
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-1)
gg05e1$logrt <- log(gg05e1$rawRT)

Recall that these data have multiple measurements from each sub-
ject for each condition:

t(xtabs(~subject + condition, gg05e1))

## subject
## condition 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
## objgap 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
## subjgap 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
## subject
## condition 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
## objgap 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
## subjgap 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
## subject
## condition 34 35 36 37 38 39 40 41 42
## objgap 8 8 8 8 8 8 8 8 8
## subjgap 8 8 8 8 8 8 8 8 8

We can visualize the different responses of subjects:

## `geom_smooth()` using formula 'y ~ x'
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It’s clear that different subjects have different effects of the relative
clause manipulation: some slopes are positive sloping, some are
flat, and some are negatively sloping. There is between-subject
variability in the relative clause effect.

Given these differences between subjects, you could fit a separate
linear model for each subject, collect together the intercepts and
slopes for each subject, and then check if the slopes are significantly
different from zero. There is a function in the package lme4 that
computes separate linear models for each subject: lmList.

library(lme4)

lmlist.fm1 <- lmList(logrt ~ so | subject, gg05e1)

One can extract the intercept and slope estimates for each subject.
For example, for subject 1:

lmlist.fm1$`1`$coefficients
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## (Intercept) so
## 5.76962 0.04352

One can plot the individual lines for each subject, as well as the
fit of a simple linear model m0 for all the data taken together; this
will show how each subject deviates in intercept and slope from
the model m0’s intercept and slope.
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To find out if there is an effect of relative clause type, we simply
need to check whether the slopes of the individual subjects’ fitted
lines taken together are significantly different from zero. A one-
sample t-test will achieve this:

t.test(coef(lmlist.fm1)[2])

##
## One Sample t-test
##
## data: coef(lmlist.fm1)[2]
## t = 2.8, df = 41, p-value = 0.008
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 0.01745 0.10658
## sample estimates:
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## mean of x
## 0.06202

The above test is exactly the same as the paired t-test and the
varying intercepts linear mixed model that we fit in the last chapter
using the by-subject aggregated data:

bysubj <- aggregate(log(rawRT) ~ subject + condition,
mean, data = gg05e1)

colnames(bysubj)[3] <- "logrt"

t.test(logrt ~ condition, bysubj, paired = TRUE)$statistic

## t
## 2.81

## compare with linear mixed model:
summary(lmer(logrt ~ condition + (1 | subject), bysubj))$coefficients[2,

]

## Estimate Std. Error t value
## -0.12403 0.04414 -2.81021

The above lmList model we just fit is called repeated measures re-
gression. We now look at how to model unaggregated data using
the linear mixed model. Incidentally, this repeated measures re-
gression model is now only of historical interest, and useful only
for understanding the linear mixed model, which is the modern
standard approach.

We turn next to three main types of linear mixed model; other
variants will be introduced in later chapters.
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3.5.1 Model type 1: Varying intercepts

The linear mixed model does something related to the above by-
subject fits, but with some crucial twists, as we see below. In the
model shown below, the statement

(1 ∣ subject) (3.26)

adjusts the grand mean estimates of the intercept by a term (a
number) for each subject.

m0.lmer <- lmer(logrt ~ so + (1 | subject), gg05e1)

Notice that we did not aggregate the data.

Here is the abbreviated output:

Random effects:
Groups Name Variance Std.Dev.
subject (Intercept) 0.09983 0.3160
Residual 0.14618 0.3823

Number of obs: 672, groups: subject, 42

Fixed effects:
Estimate Std. Error t value

(Intercept) 5.88306 0.05094 115.497
so 0.06202 0.01475 4.205

One thing to notice is that the coefficients (intercept and slope) of
the fixed effects of the above model are identical to those in the
linear model m0 above. What is different between the linear model
and the linear mixed model is the standard error. In the latter, the
standard error is determined by more than one source of variance,
as we explain below.

The intercept adjustments for each subject can be viewed by typ-
ing:
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## first 10 subjects' intercept adjustments:
ranef(m0.lmer)$subject[, 1][1:10]

## [1] -0.103928 0.077195 -0.230621 0.234198 0.008828
## [6] -0.095363 -0.205571 -0.155371 0.075944 -0.364367

Here is another way to summarize the adjustments to the grand
mean intercept by subject. The error bars represent 95% confidence
intervals.

library(lattice)
print(dotplot(ranef(m0.lmer, condVar = TRUE)))

## $subject
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3.5.2 The formal statement of the varying intercepts model

The model m0.lmer above prints out the following type of linear
model. 𝑖 indexes subject, and 𝑗 indexes items.
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Once we know the subject id and the item id, we know which
subject saw which condition:

subset(gg05e1, subject == 1 & item == 1)

## subject item condition rawRT so logrt
## 6 1 1 objgap 320 1 5.768

The mathematical form of the linear mixed model is:

𝑦𝑖𝑗 = 𝛽0 + 𝑢0𝑖 + 𝛽1 × 𝑠𝑜𝑖𝑗 + 𝜀𝑖𝑗 (3.27)

The only new thing here beyond the linear model we saw earlier
is the by-subject adjustment to the intercept. These by-subject
adjustments to the intercept 𝑢0𝑖 are assumed by lmer to come
from a normal distribution centered around 0:

𝑢0𝑖 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑢0) (3.28)

The ordinary linear model m0 has one intercept 𝛽0 for all subjects,
whereas this linear mixed model with varying intercepts m0.lmer
has a different intercept (𝛽0 + 𝑢0𝑖) for each subject 𝑖.
We can visualize the adjustments for each subject to the intercepts
as shown below.
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An important point is that in this model there are two variance
components or sources of variance (cf. the linear model, which had
only one):

• 𝑢0 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑢0)
• 𝜀 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎)
These two standard deviations determine the standard error of the
𝛽1 slope parameter.

3.5.3 Model type 2: Varying intercepts and slopes, without a
correlation

Unlike the figure associated with the lmlist.fm1 model above,
which also involves fitting separate models for each subject, the
model m0.lmer assumes different intercepts for each subject but
the same slope.

We can choose to fit different intercepts as well as different slopes
for each subject. To achieve this, assume now that each subject’s
slope is also adjusted by subject:

𝑦𝑖𝑗 = 𝛽0 + 𝑢0𝑖 + (𝛽1 + 𝑢1𝑖) × 𝑠𝑜𝑖𝑗 + 𝜀𝑖𝑗 (3.29)

That is, we additionally assume that 𝑢1𝑖 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑢1).
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The lmer notation for fitting separate intercepts and slopes is
(1+so||subject). We will just explain what the double vertical
bars represent.

m1.lmer <- lmer(logrt ~ so + (1 + so || subject), gg05e1)

The output of this model will now show that there are not two but
three sources of variability. These are:

• 𝑢0 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑢0)
• 𝑢1 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑢1)
• 𝜀 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎)
In particular, the model estimates the following standard devia-
tions:

• �̂�𝑢0 = 0.317
• �̂�𝑢0 = 0.110
• �̂� = 0.365.
Random effects:
Groups Name Variance Std.Dev.
subject (Intercept) 0.1006 0.317
subject.1 so 0.0121 0.110
Residual 0.1336 0.365

Number of obs: 672, groups: subject, 42

Fixed effects:
Estimate Std. Error t value

(Intercept) 5.8831 0.0509 115.50
so 0.0620 0.0221 2.81

These fits for each subject are visualized below (the gray line shows
the model with a single intercept and slope, i.e., our old model m0):
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3.5.3.1 Comparing lmList model with the varying intercepts model

Compare this model with the lmlist.fm1 model we fitted earlier:
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What is striking is that each subject’s estimated best fit line is
“smooothed out” compared to the lmList fits. This aspect of the
linear mixed model is called shrinkage; we return to this point
presently.
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3.5.3.2 Visualizing random effects

As before, it is instructive to visualize the individual level adjust-
ments to the intercept and slope:

print(dotplot(ranef(m1.lmer, condVar = TRUE)))

## $subject
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What this is showing is wide variability in the mean reading times
between subjects, but very little variation in the slope between
subjects.

3.5.3.3 The formal statement of varying intercepts and varying
slopes linear mixed model

Here is the full statement of the varying intercept and slopes model.
Again, i indexes subjects, j items.

𝑦𝑖𝑗 = 𝛽0 + 𝑢0𝑖 + (𝛽1 + 𝑢1𝑖) × 𝑠𝑜𝑖𝑗 + 𝜀𝑖𝑗 (3.30)

As mentioned before, there are now three variance components:
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• 𝑢0 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑢0)
• 𝑢1 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑢1)
• 𝜀 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎)
3.5.3.4 Crossed random effects for subjects and for items

Now, one interesting fact about the varying intercepts and slopes
model is that it doesn’t capture all the sources of variance yet. The
items also contribute sources of variance: just like subjects, items
may also have different intercepts and slopes.

Notice that subjects and items are fully crossed: each subject sees
each item once.

head(xtabs(~subject + item, gg05e1))

## item
## subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Linear mixed model with crossed subject and items random effects
can be defined with the following syntax:

m2.lmer <- lmer(logrt ~ so + (1 + so || subject) +
(1 + so || item), gg05e1)

Analogously to the preceding example, now there are five variance
components:

Random effects:
Groups Name Variance Std.Dev.
subject (Intercept) 0.10090 0.3177
subject.1 so 0.01224 0.1106
item (Intercept) 0.00127 0.0356



118 3 Linear models and linear mixed models

item.1 so 0.00162 0.0402
Residual 0.13063 0.3614

Number of obs: 672, groups: subject, 42; item, 16

Fixed effects:
Estimate Std. Error t value

(Intercept) 5.8831 0.0517 113.72
so 0.0620 0.0242 2.56

The item intercept and slope adjustments can be visualized as well.
Notice that there is a lot less item-level variation; this is often the
case in planned experiments like this one, where the experimental
items are carefully constructed to vary as little as possible.

print(dotplot(ranef(m2.lmer, condVar = TRUE))$item)
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One thing missing in the above models is any assumption about
the relationship between the intercept and slope adjustements by
subject and by item. It is possible that the intercept and slope
adjustments are correlated: e.g., there could be a theoretical pre-
diction that says that the slower a subject’s average reading time,
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the larger the difference between object and subject relative clause
reading times. This kind of prediction can be tested by testing what
the correlation is between the varying intercepts and slopes. We
turn to this model next.

3.5.4 Model type 3: Varying intercepts and varying slopes,
with correlation

A correlation can be introduced between the intercept and slope
adjustments by using a single vertical bar instead of two vertical
bars in the random effects structure:

m3.lmer <- lmer(logrt ~ so + (1 + so | subject) + (1 +
so | item), gg05e1)

## boundary (singular) fit: see ?isSingular

To understand what this model is doing, we have to recall what a
bivariate/multivariate distribution is.

Random effects:
Groups Name Variance Std.Dev. Corr
subject (Intercept) 0.10103 0.3178

so 0.01228 0.1108 0.58
item (Intercept) 0.00172 0.0415

so 0.00196 0.0443 1.00 <= degeneracy
Residual 0.12984 0.3603

Number of obs: 672, groups: subject, 42; item, 16

Fixed effects:
Estimate Std. Error t value

(Intercept) 5.8831 0.0520 113.09
so 0.0620 0.0247 2.51

The correlations (0.58 and 1.00) you see in the model output below
are the correlations between the varying intercepts and slopes for
subjects and for items. Notice that the variance covariance matrix
for items is degenerate: its correlation is 1. This matrix cannot be
inverted.
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When the correlation is +1 or -1 or near these numbers, this means
that the optimizer in lme4 is unable to estimate the correlation
parameter, usually due to there not being enough data. If you are
in such a situation, you are better off not trying to estimate this
parameter with the data you have, and instead fitting one of the
simpler models. We will return to this point when discussing model
selection. For further discussion, see Barr et al. (2013), Bates et al.
(2015), and Matuschek et al. (2017).

3.5.4.1 Formal statement of varying intercepts and varying slopes
linear mixed model with correlation

As usual, i indexes subjects, j items. The vector so is the sum-
coded factor levels: +1 for object relatives and -1 for subject rel-
atives. The only new thing in this model is the item-level effects,
and the specification of the variance-covariance matrix for subjects
and items, in order to include the correlation parameters.

𝑦𝑖𝑗 = 𝛼 + 𝑢0𝑖 + 𝑤0𝑗 + (𝛽 + 𝑢1𝑖 + 𝑤1𝑗) × 𝑠𝑜𝑖𝑗 + 𝜀𝑖𝑗 (3.31)

where 𝜀𝑖𝑗 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎) and

Σ𝑢 = ( 𝜎2
𝑢0 𝜌𝑢𝜎𝑢0𝜎𝑢1

𝜌𝑢𝜎𝑢0𝜎𝑢1 𝜎2
𝑢1

) Σ𝑤 = ( 𝜎2
𝑤0 𝜌𝑤𝜎𝑤0𝜎𝑤1

𝜌𝑤𝜎𝑤0𝜎𝑤1 𝜎2
𝑤1

)
(3.32)

(𝑢0
𝑢1

) ∼ 𝒩 ((0
0) , Σ𝑢) , (𝑤0

𝑤1
) ∼ 𝒩 ((0

0) , Σ𝑤) (3.33)

3.5.4.2 Visualizing the random effects

One can visualize the correlation between intercepts and slopes
by subjects. The positive correlation of 0.58 between subject in-
tercept and slope adjustments implies that slower subjects show
larger effects. However, the dotplot below doesn’t show a convinc-
ing pattern:



3.5 Linear mixed models 121

print(dotplot(ranef(m3.lmer, condVar = TRUE))$subject)

 

subject

1318421011153
23147
348
226
391
1621412912205
1917402
279
38363530284
26312432253337

−0.5 0.0 0.5

(Intercept)

−0.5 0.0 0.5

so

 

The correlation pattern is easier to see if we plot the slope adjust-
ments against the intercept adjustments.

plot(ranef(m3.lmer)$subject[, 1], ranef(m3.lmer)$subject[,
2], xlab = "Intercept adjustments (subject)", ylab = "Slope adjustments")
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When we talk about hypothesis testing, we will look at what in-
ferences we can draw from this correlation.

The dotplot showing the item-level effects shows a perfect correla-
tion between intercept and slope adjustments, but as mentioned
above these are from a degenerate variance covariance matrix and
not meaningful.

print(dotplot(ranef(m3.lmer, condVar = TRUE))$item)
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3.6 Shrinkage in linear mixed models
The estimate of the effect by participant is smaller than when we
fit a separate linear model to the subject’s data. This is called
shrinkage in linear mixed models: the individual level estimates
are shrunk towards the mean slope. The less data we have from a
given subject, the greater the shrinkage.

3.6.0.1 Shrinkage in action: when data are missing

The importance and value of shrinkage becomes clear once we sim-
ulate a situation where there is some missing data. Missingness can
happen in experiments, either due to lost measurements (arising
from computer error or programming errors), or some other reason.
To see what happens when we have missing data, let’s randomly
delete some data from one subject. We will randomly delete 50%
of subject 37’s data:
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FIGURE 3.1: The figures show linear model fits (the grand mean
estimates) for three subjects; shown are the simple linear model fit
on all the data (gray line), the lmList model fit to the individual
subject’s data (black line), and the linear mixed model fit (the
broken line). In all three subjects’ models, the linear mixed model
estimates are shrunk towards the grand mean (gray line) estimates.

set.seed(4321)
## choose some data randomly to remove:
rand <- rbinom(1, n = 16, prob = 0.5)

Here are subject 37’s reading times (16 data points):

gg05e1[which(gg05e1$subject == 37), ]$rawRT

## [1] 770 536 686 578 457 487 2419 884 3365 233
## [11] 715 671 1104 281 1081 971

Now, we randomly delete half the data:

gg05e1$deletedRT <- gg05e1$rawRT
gg05e1[which(gg05e1$subject == 37), ]$deletedRT <- ifelse(rand,

NA, gg05e1[which(gg05e1$subject == 37), ]$rawRT)

Now subject 37’s estimates are going to be pretty wild, because
they are based on much less data (even one extreme value can
strongly influence the mean):
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subset(gg05e1, subject == 37)$deletedRT

## [1] 770 NA 686 578 NA NA NA NA 3365 233
## [11] NA 671 1104 NA NA 971

## [1] 6.617

## [1] 0.3554

## [1] 6.688

## [1] 0.3884

Now fit the hierarchical model and examine subject 37’s estimates
on undeleted vs deleted data:
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FIGURE 3.2: The figures show linear model fits (the grand mean
estimates) for subject 37. When using lmList, deleting data leads
to very different estimates; but using lmer, deleting half the data
from this subject hardly affects the individual subject’s estimates.

What we see here is that the estimates from the hierarchical model
are barely affected by the missingness, but the estimates from the
lmList model are heavily affected. This means that linear mixed
models will give you more robust estimates (think Type M error!)
compared to no pooling models. This property of shrinkage is one
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reason why linear mixed models are so important in cognitive sci-
ence.

3.7 Summary

3.8 Exercises
Download the data-set E1_data.csv. Then run the following com-
mands to load the lme4 library and to set up your data for analysis:

library(lme4)

## load data:
dat <- read.csv("data/E1_data.csv", header = TRUE)
## convert RT to milliseconds:
dat$RT <- dat$RT * 1000
## choose critical region:
word_n <- 4
## subset critical data:
crit <- subset(dat, Position == word_n)

The data consist of a repeated measures experiment comparing
two conditions which are labeled Type 1 and Type 2. The column
Sub refers to subject id, and the column ID refers to item id. RT
refers to reading time in seconds (we have converted it above to mil-
liseconds); NA is missing data. You can ignore the other columns.
This is a standard Latin square design. We will work with the data
frame crit below.

3.8.1 By-subjects t-test

Using RT as a dependent variable, carry out the appropriate by-
subjects t-test to evaluate the null hypothesis that there is no
difference between the conditions labeled Type 1 and 2. Write
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down all the R commands needed to do the appropriate t-test,
and the resulting t-value and p-value. State whether we can reject
the null hypothesis given the results of the t-test; explain why.

3.8.2 Fitting a linear mixed model

Now, using the data-frame called crit above as the data-frame,
fit a linear mixed model (called M0) with the column called Type
coded as sum contrasts.

Assume varying intercepts for subjects and varying intercepts for
items (varying intercepts are sometimes called random intercepts).
Write down the linear mixed models command, and write down
the fixed-effects estimates (Intercept and slope) along with their
standard errors. State whether we can reject the null hypothesis
given the results of the t-value shown in the linear mixed model
output; explain why.

3.8.3 t-test vs. linear mixed model

Why do the results of the t-test and the linear mixed model M0
differ?

3.8.4 Power calculation using power.t.test

The researcher wants to achieve 80% statistical power in a future
study. Based on the available data above, she determines that the
standard error (note: not the standard deviation!) of the differ-
ence in means between the conditions Type 1 and Type 2 is 21.
She has reason to believe that the true difference in means is 30 ms.
What is the number of participants (to the nearest whole number)
needed to achieve approximately 80% power? Use the power.t.test
function to compute your answer. Write down the power.t.test
function specification you used, as well as the number of partici-
pants needed, based on the output of the power.t.test function.
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3.8.5 Residuals

The plot below shows the distribution of the residuals from model
M0 plotted against the standard normal distribution with mean
0 and standard deviation 1. Explain what the plot tells us about
one of the model assumptions of the linear mixed model M0 that
you fit earlier.

(You can ignore the numbers below the plot.)
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3.8.6 Understanding contrast coding

Using only your estimates of the intercept and the slope in model
M0’s fixed effects output, write down the mean of the condition
labeled Type 1 in the data, and the mean of the condition labeled
Type 2.

3.8.7 Understanding the fixed-effects output

Suppose that the model M0’s output for the fixed effects analysis
were as follows. SO is a sum-coded contrast specification for the
conditions labeled Type.
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results

## Estimate Std. Error t value
## (Intercept) 686.01 47.54 14.43
## SO 18.94 NA 2.00

What is the value of the standard error of the slope (SO), which
is labeled NA above?

3.8.8 Understanding the null hypothesis test

A researcher fits a linear mixed model to compare the reading
times between two conditions (a) and (b), just like in the above
study. Her hypothesis is that the mean for condition (a) is larger
than the mean for (b). She observes that condition a has sample
mean 500 ms, and condition (b) has sample mean 450 ms. She
also establishes from the linear mixed model that the t-value is
1.94. The approximate p-value associated with this t-value is 0.052.
Answer the following: (A) Do we have evidence against the null
hypothesis and (B) do we have evidence for the particular research
hypothesis that the researcher has?

The researcher runs the same analysis as above on a new data-set
that has the same design as above, and now gets a p-value of 0.001.
Now she has stronger evidence than in the above case where the
p-value was 0.052. What does she have stronger evidence for?





4
Hypothesis testing using the likelihood ratio
test

We started the book with the one-sample t-test. There, we had the
following procedure:

• Given independent and identically distributed data 𝑦, define a
null hypothesis: 𝐻0 ∶ 𝜇 = 𝜇0

• Compute the sample mean ̄𝑦 and the standard error SE
• Reject the null hypothesis if the absolute value of ̄𝑦/𝑆𝐸 is larger

than 2.
Here, we turn to a closely related test: the likelihood ratio test
statistic.

4.1 The likelihood ratio test: The theory
Suppose that 𝑋1, … , 𝑋𝑛 are independent and normally distributed
with mean 𝜇 and standard deviation 𝜎 (assume for simplicity that
𝜎 is known).

Let the null hypothesis be 𝐻0 ∶ 𝜇 = 𝜇0 and the alternative be
𝐻1 ∶ 𝜇 ≠ 𝜇0. Here, 𝜇0 is a number, such as 0.
The likelihood of the data 𝑦 can be computed under the null model,
in which 𝜇 = 𝜇0, and under the alternative model, in which 𝜇 has
some specific alternative value. To make this concrete, imagine 10
data points being generated from a Normal(0,1).

131
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y <- rnorm(10)

We can compute the joint likelihood under a null hypothesis that
𝜇 = 0:

likNULL <- prod(dnorm(y, mean = 0, sd = 1))

On the log scale, we would need to add the log likelihoods of each
data point:

loglikNULL <- sum(dnorm(y, mean = 0, sd = 1, log = TRUE))
loglikNULL

## [1] -11.6

Similarly, we can compute the log likelihood with 𝜇 equal to the
maximum likelihood estimate of 𝜇, the sample mean.

loglikALT <- sum(dnorm(y, mean = mean(y), sd = 1, log = TRUE))
loglikALT

## [1] -11.59

Essentially, the likelihood ratio test compares the ratio of likeli-
hoods of the two models; on the log scale, the difference in log like-
lihood is taken. The likelihood ratio test then chooses the model
with the higher log likelihood, provided that the higher likelihood
is high enough (we will just make this more precise).

One can specify the test in general terms as follows. Suppose that
the likelihood is with respect to some parameter 𝜃. We can evaluate
the likelihood at 𝜇0, the null hypothesis value of the parameter,
and evaluate the likelihood using the maximum likelihood estimate

̂𝜃 of the parameter. The likelihood ratio can then be written as
follows:
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Λ =
𝑚𝑎𝑥𝜃∈𝜔0

(𝑙𝑖𝑘(𝜃))
𝑚𝑎𝑥𝜃∈𝜔1)(𝑙𝑖𝑘(𝜃)) (4.1)

where, 𝜔0 = {𝜇0} and 𝜔1 = {∀𝜇 ∣ 𝜇 ≠ 𝜇0}. The function max just
selects the maximum value of any choices of parameter values; in
the case of the null hypothesis there is only one value, 𝜇0. In the
case of the alternative model, the maximum likelihood estimate ̂𝜃
is the maximum value.

Now, assuming that the data are coming from a normal distribu-
tion, the numerator of the likelihood ratio statistic is:

1
(𝜎

√
2𝜋)𝑛 𝑒𝑥𝑝 (− 1

2𝜎2

𝑛
∑
𝑖=1

(𝑋𝑖 − 𝜇0)2) (4.2)

For the denominator, the MLE �̄� is taken as 𝜇:

1
(𝜎

√
2𝜋)𝑛 𝑒𝑥𝑝 (− 1

2𝜎2

𝑛
∑
𝑖=1

(𝑋𝑖 − �̄�)2) (4.3)

The likelihood ratio statistic is then:

Λ =
1

(𝜎
√

2𝜋)𝑛 𝑒𝑥𝑝 (− 1
2𝜎2 ∑𝑛

𝑖=1(𝑋𝑖 − 𝜇0)2)
1

(𝜎
√

2𝜋)𝑛 𝑒𝑥𝑝 (− 1
2𝜎2 ∑𝑛

𝑖=1(𝑋𝑖 − �̄�)2) (4.4)

Canceling out common terms:

Λ = 𝑒𝑥𝑝 (− 1
2𝜎2 ∑𝑛

𝑖=1(𝑋𝑖 − 𝜇0)2)
𝑒𝑥𝑝 (− 1

2𝜎2 ∑𝑛
𝑖=1(𝑋𝑖 − �̄�)2) (4.5)

Taking logs:
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logΛ = (− 1
2𝜎2

𝑛
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(𝑋𝑖 − 𝜇0)2) − (− 1
2𝜎2

𝑛
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= − 1
2𝜎2 (

𝑛
∑
𝑖=1

(𝑋𝑖 − 𝜇0)2 −
𝑛

∑
𝑖=1

(𝑋𝑖 − �̄�)2)

(4.6)

Now, it is a standard algebraic trick to rewrite ∑𝑛
𝑖=1(𝑋𝑖 − 𝜇0)2 as

a sum of two terms:

𝑛
∑
𝑖=1

(𝑋𝑖 − 𝜇0)2 =
𝑛

∑
𝑖=1

(𝑋𝑖 − �̄�)2 + 𝑛(�̄� − 𝜇0)2 (4.7)

If we rearrange terms, we obtain:

𝑛
∑
𝑖=1

(𝑋𝑖 − 𝜇0)2 −
𝑛

∑
𝑖=1

(𝑋𝑖 − �̄�)2 = 𝑛(�̄� − 𝜇0)2 (4.8)

Now, we just established above that logΛ is:

logΛ = − 1
2𝜎2 (

𝑛
∑
𝑖=1

(𝑋𝑖 − 𝜇0)2 −
𝑛

∑
𝑖=1

(𝑋𝑖 − �̄�)2) (4.9)

Consider the term in the brackets:

(
𝑛

∑
𝑖=1

(𝑋𝑖 − 𝜇0)2 −
𝑛

∑
𝑖=1

(𝑋𝑖 − �̄�)2) (4.10)

This can be rewritten as:

𝑛(�̄� − 𝜇0)2 (4.11)

Rewriting in this way gives us:
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ℓ = − 1
2𝜎2 𝑛(�̄� − 𝜇0)2 (4.12)

Rearranging terms:

− 2ℓ = 𝑛(�̄� − 𝜇0)2

𝜎2 (4.13)

Or even more transparently:

− 2ℓ = (�̄� − 𝜇0)2

𝜎2
𝑛

(4.14)

This should remind you of the t-test! Basically, just like in the t-
test, what this is saying is that we reject the null when ∣ �̄� − 𝜇0 ∣,
or negative two times the difference in log likelihood, is large!

Now we will define what it means for −2ℓ to be large. We will
define the likelihood ratio test statistic as follows. Here, 𝐿𝑖𝑘(𝜃)
refers to the likelihood given some value 𝜃 for the parameter, and
𝑙𝑜𝑔𝐿𝑖𝑘(𝜃) refers to the log likelihood.

Λ = − 2 × (𝐿𝑖𝑘(𝜃0)/𝐿𝑖𝑘(𝜃1))
logΛ = − 2 × {𝑙𝑜𝑔𝐿𝑖𝑘(𝜃0) − 𝑙𝑜𝑔𝐿𝑖𝑘(𝜃1)} (4.15)

where 𝜃1 and 𝜃0 are the estimates of 𝜃 under the alternative and
null hypotheses, respectively. The likelihood ratio test rejects 𝐻0
if logΛ is sufficiently large. As the sample size approaches infinity,
logΛ approaches the chi-squared distribution:

logΛ → 𝜒2
𝑟 as 𝑛 → ∞ (4.16)

where 𝑟 is called the degrees of freedom and is the difference in the
number of parameters under the null and alternative hypotheses.
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The above result is called Wilks’ theorem. The proof of Wilks’ the-
orem is fairly involved but you can find it in Lehmann’s textbook
Testing Statistical Hypotheses.

Note that sometimes you will see the form:

logΛ = 2{ℓ(𝜃1) − ℓ(𝜃0)} (4.17)

It should be clear that both statements are saying the same thing;
in the second case, we are just subtracting the null hypothesis log
likelihood from the alternative hypothesis log likelihood, so the
negative sign disappears.

That’s the theory. Let’s see how the likelihood ratio test works
for (a) simulated data, and (b) our running example, the English
relative clause data from Grodner and Gibson (2005).

4.2 A practical example using simulated data
A practical example will make the usage of this test clear. Let’s
just simulate a linear model:

x <- 1:10
y <- 10 + 20 * x + rnorm(10, sd = 10)

Here, the null hypothesis that the slope is 0 is false (it has value
20). Now, we fit a null hypothesis model, without a slope:

## null hypothesis model:
m0 <- lm(y ~ 1)

We will compare this model’s log likelihood with that of the alter-
native model, which includes an estimate of the slope:
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## alternative hypothesis model:
m1 <- lm(y ~ x)

The difference in log likelihood, multiplied with -2, is:

LogLambda <- -2 * (logLik(m0) - logLik(m1))
## observed value:
LogLambda[1]

## [1] 34.49

The difference in the number of parameters in the two models is
one, so −2 logΛ has the distribution 𝜒2

1. Is the observed value of
−2 logΛ unexpected under this distribution? We can calculate the
probability of obtaining the likelihood ratio statistic we observed
above, or a value more extreme, given the 𝜒2

1 distribution.

pchisq(LogLambda[1], df = 1, lower.tail = FALSE)

## [1] 4.286e-09

Just like the critical t-value in the t-test, the critical chi-squared
value here is:

## critical value:
qchisq(0.95, df = 1)

## [1] 3.841

If minus two times the observed difference in log likelihood is larger
than this critical value, we reject the null hypothesis.

Note that in the likelihood test above, we are comparing one nested
model against another: the null hypothesis model is nested inside
the alternative hypothesis model. What this means is that the
alternative hypothesis model contains all the parameters in the
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null hypothesis model (i.e., the intercept) plus another one (the
slope).

4.3 A real-life example: The English relative clause data
The likelihood ratio test is also the way that hypothesis testing is
done with the linear mixed model. Here is how it works. Let’s look
again at the Grodner and Gibson (2005) English relative clause
data. The null hypothesis here refers to the slope parameter. When
we have the sum contrast coding, the intercept 𝛽0 refers to the
grand mean, and the slope 𝛽1 is the amount by which subject and
object relative clause mean reading times deviate from the grand
mean. Testing the null hypothesis that 𝛽0 is 0 amounts to testing
whether there is any difference in means between the two relative
clause types. This becomes clear if we consider the following.

Let object relatives be coded as +1 and subject relatives as −1.
Then, the mean reading time 𝜇𝑜𝑟 for object relatives in the linear
mixed model is:

𝜇𝑜𝑟 = 𝛽0 + 𝛽1 (4.18)

Similarly, the mean reading time 𝜇𝑠𝑟 for subject relatives is:

𝜇𝑠𝑟 = 𝛽0 − 𝛽1 (4.19)

If the null hypothesis is that 𝜇𝑜𝑟 − 𝜇𝑠𝑟 = 0, then this amounts to
saying that:

(𝛽0 + 𝛽1) − (𝛽0 − 𝛽1) = 0 (4.20)

Removing the brackets gives us:

𝛽0 + 𝛽1 − 𝛽0 + 𝛽1 = 0 (4.21)
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This yields the equation:

2𝛽1 = 0 (4.22)

Dividing both sides of the equation by 2, we get the null hypothesis
that 𝛽1 = 0.
Incidentally, if we had rescaled the contrast coding to be not ±1
but ±1/2, the parameter 𝛽1 would represent exactly the difference
between the two means, and null hypothesis in equation (4.22)
would have come out to be 𝛽1 = 0. This is why it is sometimes
better to recode the contrasts as ±1/2 rather than ±1. See Schad
et al. (2020) for details; we will discuss this in the contrast coding
chapter as well.

Let’s load the data, set up the contrast coding, and fit the null
versus the alternative models. We will fit varying intercept and
varying slopes for subject and item, without correlations for items.
We don’t attempt to fit the so-called “maximal model” here with
respect to the items random effects because we would get a singu-
larity in the variance covariance matrix.

gg05e1 <- read.table("data/grodnergibsonE1crit.txt",
header = TRUE)

gg05e1$so <- ifelse(gg05e1$condition == "objgap", 1,
-1)

gg05e1$logrt <- log(gg05e1$rawRT)

library(lme4)
m0 <- lmer(logrt ~ 1 + (1 + so | subject) + (1 + so ||

item), gg05e1)
m1 <- lmer(logrt ~ 1 + so + (1 + so | subject) + (1 +

so || item), gg05e1)

Next, we compare the two models’ log likelihoods. There is a func-
tion in the lme4 package that achieves that: the anova function:
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anova(m0, m1)

## refitting model(s) with ML (instead of REML)

## Data: gg05e1
## Models:
## m0: logrt ~ 1 + (1 + so | subject) + ((1 | item) + (0 + so | item))
## m1: logrt ~ 1 + so + (1 + so | subject) + ((1 | item) + (0 + so |
## m1: item))
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## m0 7 707 739 -347 693
## m1 8 703 739 -343 687 6.15 1 0.013

You can confirm from the output that the Chisq value shown is
minus two times the difference in log likelihood of the two models.
The p-value is computed using the chi-squared distribution with
one degree of freedom because in the two models the difference in
the number of parameters is one:

round(pchisq(5.95, df = 1, lower.tail = FALSE), 3)

## [1] 0.015

It is common in the psycholinguistics literature to use the t-value
from the linear mixed model output to conduct the hypothesis test
on the slope:

summary(m1)$coefficients

## Estimate Std. Error t value
## (Intercept) 5.88306 0.05176 113.669
## so 0.06202 0.02422 2.561

The more general method for hypothesis testing is the likelihood
ratio test shown above.

One can also use the likelihood ratio test to evaluate whether a
variance component should be included or not. For example, is
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the correlation parameter justified for the subjects random effects?
Recall that we had a correlation of 0.58. Is this statistically signif-
icant? One can test this in the following way:

m1 <- lmer(logrt ~ 1 + so + (1 + so | subject) + (1 +
so || item), gg05e1)

m1NoCorr <- lmer(logrt ~ 1 + so + (1 + so || subject) +
(1 + so || item), gg05e1)

anova(m1, m1NoCorr)

## refitting model(s) with ML (instead of REML)

## Data: gg05e1
## Models:
## m1NoCorr: logrt ~ 1 + so + ((1 | subject) + (0 + so | subject)) + ((1 |
## m1NoCorr: item) + (0 + so | item))
## m1: logrt ~ 1 + so + (1 + so | subject) + ((1 | item) + (0 + so |
## m1: item))
## npar AIC BIC logLik deviance Chisq Df
## m1NoCorr 7 710 741 -348 696
## m1 8 703 739 -343 687 8.7 1
## Pr(>Chisq)
## m1NoCorr
## m1 0.0032

The test indicates that we can reject the null hypothesis that the
correlation parameter is 0. We will return to this parameter in the
chapter on simulation.

4.4 Exercises
4.4.1 Chinese relative clauses

Load the following two data-sets:
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gibsonwu <- read.table("data/gibsonwucrit.txt", header = TRUE)
gibsonwu2 <- read.table("data/gibsonwu2012datarepeat.txt",

header = TRUE)

The data are taken from two oexperiments that investigate (inter
alia) the effect of relative clause type on reading time in Chinese.
The data are from Gibson andWu (2013) and Vasishth et al. (2013)
respectively. The second data-set is a direct replication attempt of
the first.

Chinese relative clauses are interesting theoretically because they
are prenominal: the relative clause appears before the head noun.
Figure 4.1 shows an example.

knitr::include_graphics("figures/chineserc.png")

The consequence of Chinese relative clauses being prenominal is
that the distance between the gap in relative clause and the head
noun is larger in subject relatives than object relatives (see Fig-
ure 4.1). Hsiao and Gibson (2003) have claimed that the larger
distance in subject relatives leads to longer reading time at the
head noun. Under this view, the prediction is that subject rela-
tives are harder to process than object relatives. If this is true,
this is interesting because in most other languages that have been
studied, subject relatives are easier to process than object relatives;
so Chinese will be a very unusual exception cross-linguistically.

The data provided are for the critical region (the head noun). The
experiment method is self-paced reading, so we have reading times
in milliseconds.

The research question is whether the difference in reading times
between object and subject relative clauses is negative. For both
data-sets, investigate this question by (a) fitting a paired t-test
(by-subjects and by items), (b) fitting the most complex linear
mixed model you can to the data and then interpreting the t-value,
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FIGURE 4.1: An example of subjects vs. object relative clauses
in Chinese.



144 4 Hypothesis testing using the likelihood ratio test

and (c) the likelihood ratio test. What can we conclude about the
research question?

4.4.2 Agreement attraction in comprehension

Load the following data:

datE1 <- read.table("data/dillonE1.txt", header = TRUE)

The data are taken from an experiment that investigate (inter alia)
the effect of number similarity between a noun and the auxiliary
verb in sentences like the following. There are two levels to a factor
called Int(erference): low and high.

• low: The key to the cabinet are on the table
• high: The key to the cabinets are on the table

Here, in the condition marked high, the auxiliary verb are is pre-
dicted to be read faster than in the condition marked low, because
the plural marking on the noun cabinets leads the reader to think
that the sentence is grammatical. (Note that both sentences are un-
grammatical.) This phenomenon, where the high condition is read
faster than the low condition, is called agreement attraction.

The data provided are for the critical region (the auxiliary verb
are). The experiment method is eyetracking; we have total reading
times in milliseconds.

The research question is whether the difference in reading times
between high and low conditions is negative.

• First, figure out which linear mixed model is appropriate for
these data (varying intercepts only? varying intercepts and
slopes? with or without correlations?).

• Then, carry out a statistical test using (a) the paired t-test (us-
ing the t.test function), (b) the t-test of the linear mixed model,
and (c) the likelihood ratio test. What is your conclusion? Is
there evidence for agreement attraction in the data?
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4.4.3 The grammaticality illusion

Load the following data-sets:

english <- read.table("data/embeddingenglish.txt",
header = TRUE)

dutch <- read.table("data/embeddingdutch.txt", header = TRUE)

In an offline accuracy rating study on English double center-
embedding constructions, Gibson and Thomas (1999) found that
grammatical constructions (e.g., example a below) were no less
acceptable than ungrammatical constructions (e.g., example b)
where a middle verb phrase (e.g., was cleaning every week) was
missing.

(a) The apartment that the maid who the service had sent
over was cleaning every week was well decorated.

(b) *The apartment that the maid who the service had sent
over — was well decorated

Based on these results from English, Gibson and Thomas (1999)
proposed that working-memory overload leads the comprehender
to forget the prediction of the upcoming verb phrase (VP), which
reduces working-memory load. This came to be known as the VP-
forgetting hypothesis. The prediction is that in the word immedi-
ately following the final verb, the grammatical condition (which
is coded as +1 in the data-frames) should be harder to read than
the ungrammatical condition (which is coded as -1).

The data provided above test this hypothesis using self-paced read-
ing for English (Vasishth et al., 2011), and for Dutch (Frank et al.,
2015). The data provided are for the critical region (the noun
phrase, labeled NP1, following the final verb). We have reading
times in log milliseconds.

Is there support for the VP-forgetting hypothesis cross-
linguistically, from English and Dutch?
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Using simulation to understand your model

Data analysis is often taught as if the goal is to work out the
p-value and make a decision: reject or fail to reject the null hy-
pothesis. However, understanding the long-run properties of one’s
experiment design and statistical model under repeated sampling
requires more work and thought. Specifically, it is important to
understand (a) what one’s model’s power and Type I error prop-
erties are, and (b) whether the model we plan to fit to our data
can, even in principle, recover the parameters in the model.

In order to study these properties of one’s model, it is necessary
to learn to simulate data that reflects our experimental design.
Let’s think about how to simulate data given a Latin-square 2
condition repeated measures design. We begin with our familiar
running example, the Grodner and Gibson (2005) English relative
clause data.

5.1 A reminder: The maximal linear mixed model
Recall the structure of the linear mixed model that can be used
to fit the Grodner and Gibson (2005) data. We will discuss the
so-called maximal model here—varying intercepts and slopes for
subject and for item, with correlations—because that is the most
general case.

In the model specification below, 𝑖 indexes subjects, 𝑗 items. The
vector so has the sum contrast coding as usual: object relatives are
coded as +1/2 and subject relatives as -1/2. We use this coding
instead of ±1 as before, because now the slope will reflect the

147
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effect size rather than two times the effect size (see the hypothesis
testing chapter).

Every row in the data-frame can be uniquely identified by the
subject and item id, because this is a Latin square design and
each subject sees exactly one instance of each item in a particular
condition.

𝑦𝑖𝑗 = 𝛽0 + 𝑢0𝑖 + 𝑤0𝑗 + (𝛽1 + 𝑢1𝑖 + 𝑤1𝑗) × 𝑠𝑜𝑖𝑗 + 𝜀𝑖𝑗 (5.1)

where 𝜀𝑖𝑗 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎) and

Σ𝑢 = ( 𝜎2
𝑢0 𝜌𝑢𝜎𝑢0𝜎𝑢1

𝜌𝑢𝜎𝑢0𝜎𝑢1 𝜎2
𝑢1

) Σ𝑤 = ( 𝜎2
𝑤0 𝜌𝑤𝜎𝑤0𝜎𝑤1

𝜌𝑤𝜎𝑤0𝜎𝑤1 𝜎2
𝑤1

)
(5.2)

(𝑢0
𝑢1

) ∼ 𝒩 ((0
0) , Σ𝑢) , (𝑤0

𝑤1
) ∼ 𝒩 ((0

0) , Σ𝑤) (5.3)

𝛽0 and 𝛽1 are the intercept and slope, representing the grand mean
and the deviation from the grand mean in each condition. 𝑢 are
the subject level adjustments, and 𝑤 the item level adjustments to
the intercept and slope.
The above mathematical model expresses a generative process. In
order to produce simulated data using the above process, we have
to decide on some parameter values. We do this by estimating the
parameters from the Grodner and Gibson (2005) study.

5.2 Obtain estimates from a previous study
First we load and prepare the relative clause data for data analysis.
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gg05e1 <- read.table("data/grodnergibsonE1crit.txt",
header = TRUE)

gg05e1$so <- ifelse(gg05e1$condition == "objgap", 1/2,
-1/2)

gg05e1$logrt <- log(gg05e1$rawRT)

Next, fit the so-called maximal model. We will ignore the singular-
ity warning as it won’t affect us in our simulations.

library(lme4)
m<-lmer(logrt ~ so +

(1+so|subject) +
(1+so|item),

data=gg05e1,
## "switch off" warnings:
control=lmerControl(calc.derivs=FALSE))

The model summary shows that we can reject the null hypothesis
of no difference in relative clauses:

summary(m)$coefficients

## Estimate Std. Error t value
## (Intercept) 5.883 0.05202 113.082
## so 0.124 0.04932 2.515

Let’s focus on that effect for our power analysis. What is the
prospective power of detecting this effect for a future study? Note
that we never compute power for an existing study—that is called
post-hoc power and is a pointless quantity to compute because
once the p-value is known, the power is just a transformation of
the p-value (Hoenig and Heisey, 2001).

What we are doing below will look like post-hoc power because
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we are using existing data to compute power. However, what is
crucially different in our approach is that (a) we remain unsure
about the true effect, (b) we are making a statement about what
the power properties would be if we ran the same study again,
with new subjects, but in the same environment (lab, etc.). We are
not making any claim about the power properties of the current
experiment; that ship has already sailed, the data are already at
hand! Once the data are analyzed, it’s too late to compute power
for that particular data-set. A power analysis is only relevant for
a design to be run in the future.

5.3 Decide on a range of plausible values of the effect
size

Notice that the effect in milliseconds is relatively large, given the
estimates from similar phenomena in reading studies in psycholin-
guistics (Jäger et al., 2017):

b0 <- summary(m)$coefficients[1, 1]
b1 <- summary(m)$coefficients[2, 1]
## effect estimate in log ms:
b1

## [1] 0.124

## effect estimate in ms:
exp(b0 + b1 * (0.5)) - exp(b0 + b1 * (-0.5))

## [1] 44.54

But the standard errors tell us that the effect could be as small or
as large as the following values:
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b1_stderr <- summary(m)$coefficients[2, 2]
lower <- b1 - 2 * b1_stderr
upper <- b1 + 2 * b1_stderr
lower

## [1] 0.02539

upper

## [1] 0.2227

The above range 0.03 and 0.22 arises because the range of plausible
effect sizes is between ̂𝛽1 ± 2𝑆𝐸 on the log ms scale.

On the ms scale, the range is:

exp(b0 + lower * (0.5)) - exp(b0 + lower * (-0.5))

## [1] 9.113

exp(b0 + upper * (0.5)) - exp(b0 + upper * (-0.5))

## [1] 80.09

On the ms scale we see that that’s a lot of uncertainty in the effect
size! With some experience, you will come to recognize that such a
wide confidence bound is a sign of low power. We will just establish
the prospective power properties of this study in a minute.

We can take the above uncertainty of the ̂𝛽1 estimator into account
(on the log ms scale—remember that the model is based on log rt)
by assuming that the effect has the following uncertainty on the
log ms scale:

𝛽1 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0.12, 0.05) (5.4)

Here, we are doing something that is, strictly speaking, Bayesian in
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thinking. We are describing our uncertainty about the true effect
from the best estimate we have—existing data. To talk about the
uncertainty, we are (ab)using the 95% confidence interval (treat-
ing it like its telling us the range of plausible values). Recall that
strictly speaking, in the frequentist paradigm, one cannot talk
about the probability distribution of the effect size—in frequen-
tist theory, the true value of the parameter is a point value, it
has no distribution. The range ̂𝛽1 ± 2 × 𝑆𝐸 refers to the esti-
mated mean of the sampling distribution of the sample means,
and to the standard deviation of this sampling distribution. Thus,
strictly speaking, this range does not reflect our uncertainty about
the true parameter’s value. Having said this, we are going to use
the effect estimates from our model fit as a starting point for our
power analysis because this is the best information we have so far
about the English relative clause design.

5.4 Extract parameter estimates
Next, in preparation for the power analysis, we extract all the
parameter estimates from the model we have fit above. The pa-
rameters are:

• The two fixed effects (the 𝛽 parameters)
• The residuals’ standard deviation
• The standard deviations of the subject intercept and slope ad-

justments, and the corresponding correlation matrix.
• The standard deviations of the item intercept and slope adjust-

ments, and the corresponding correlation matrix.

The correlation matrices and the subject/item random effects stan-
dard deviations are used to assemble the variance covariance ma-
trix; this is done using the sdcor2cov function from the SIN pack-
age; recall the discussion in chapter 1. For the variance covariance
matrix for items random effects, we use an intermediate value of
0.5 for the correlation parameter because the linear mixed model
was unable to estimate the parameter.
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## extract parameter estimates:
beta <- round(summary(m)$coefficients[, 1], 4)
sigma_e <- round(attr(VarCorr(m), "sc"), 2)
subj_ranefsd <- round(attr(VarCorr(m)$subject, "stddev"),

4)
subj_ranefcorr <- round(attr(VarCorr(m)$subject, "corr"),

1)

## assemble variance-covariance matrix for subjects:
Sigma_u <- SIN::sdcor2cov(stddev = subj_ranefsd, corr = subj_ranefcorr)
## check that the matrix can be inverted:
solve(Sigma_u)

## (Intercept) so
## (Intercept) 15.46 -13.31
## so -13.31 31.82

item_ranefsd <- round(attr(VarCorr(m)$item, "stddev"),
4)

item_ranefcorr <- round(attr(VarCorr(m)$item, "corr"),
1)

## assemble variance matrix for items: ## this won't
## work:
## Sigma_w<-SIN::sdcor2cov(stddev=item_ranefsd,
## corr=item_ranefcorr) solve(Sigma_w) choose some
## intermediate values for correlations:
corr_matrix <- (diag(2) + matrix(rep(1, 4), ncol = 2))/2

Sigma_w <- SIN::sdcor2cov(stddev = item_ranefsd, corr = corr_matrix)
## matrix inverts:
solve(Sigma_w)

## [,1] [,2]
## [1,] 774.2 -181.3
## [2,] -181.3 169.9
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5.5 Define a function for generating data
Next, we define a function that generates repeated measures data
given the parameter estimates. The basic idea here is the following.

• First, create a data-frame that represents a Latin-square design.
• Then, given the condition id, and the subject and item ids in

each row of the data frame, generate data row-by-row.

We explain these steps next.

5.5.1 Generate a Latin-square design

First, consider how one can create a Latin-square design. Suppose
we have four items and four subjects. For such an experiment, we
would create two groups, g1 and g2, with the following layout.

nitem <- 4
nsubj <- 4

g1 <- data.frame(item = 1:nitem, cond = rep(c("a",
"b"), nitem/2))

g2 <- data.frame(item = 1:nitem, cond = rep(c("b",
"a"), nitem/2))

g1

## item cond
## 1 1 a
## 2 2 b
## 3 3 a
## 4 4 b

g2

## item cond
## 1 1 b
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## 2 2 a
## 3 3 b
## 4 4 a

Half the total number of subjects will be assigned to group 1 and
half to group 2:

## assemble data frame:
gp1 <- g1[rep(seq_len(nrow(g1)), nsubj/2), ]
gp2 <- g2[rep(seq_len(nrow(g2)), nsubj/2), ]

simdat <- rbind(gp1, gp2)

## add subject column:
simdat$subj <- rep(1:nsubj, each = nitem)

Finally, the contrast coding for each row in the data-frame is set
up:

## add contrast coding:
simdat$so <- ifelse(simdat$cond == "a", -1/2, 1/2)

5.5.2 Generate data row-by-row

Then, we proceed row-by-row in this data frame, and generate
data for each subject, item, and condition. For example, the first
row of our simulated data-set has subject id:

simdat[1, ]$subj

## [1] 1

Similarly, the first row has item id:

simdat[1, ]$item
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## [1] 1

The first row’s condition coding is:

simdat[1, ]$so

## [1] -0.5

These three pieces of information are what we need to generate
data for the first row. Recall that the model for subject 𝑖 and item
𝑗 in condition so is

𝛽0+𝑢0𝑖+𝑤0𝑗+(𝛽+1+𝑢1𝑖+𝑤1𝑗)×𝑠𝑜+𝜀 where 𝜀 ∼ 𝑁(0, 𝜎) (5.5)

The terms u0, w0, and u1, w1, which are the adjustments to the
intercepts and slopes by subject and item, are stored in two ma-
trices that are generated randomly each time that we simulate
new subjects/items. Recall from chapter 1 how bivariate data are
generated. The intercept and slope adjustments will be generated
using the mvrnorm function in the MASS library. For example,
given the variance covariance matrix for subjects Sigma_u that we
created above, the subject random effects (intercept and slope ad-
justments) for 10 subjects can be generated in a matrix as follows:

library(MASS)
u <- mvrnorm(n = 10, mu = c(0, 0), Sigma = Sigma_u)
u

## (Intercept) so
## [1,] 0.1059 -0.06177
## [2,] 0.4790 -0.13362
## [3,] 0.3538 0.26910
## [4,] 0.1804 0.22173
## [5,] -0.1610 0.34222
## [6,] 0.2322 0.08877
## [7,] 0.3389 0.16131
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## [8,] -0.2254 0.12916
## [9,] -0.1795 -0.20251
## [10,] 0.6060 0.40070

Each row in this matrix is the intercept and slope adjustment for
a subject; the row number indexes the subject id. For example,
subject 1’s intercept adjustment is:

u[1, 1]

## (Intercept)
## 0.1059

Subject 1’s slope adjustment is:

u[1, 2]

## so
## -0.06177

Analogously to the subject random effects matrix, a matrix for
items random effects is also generated. As an example, we generate
simulated random effects for 10 items:

w <- mvrnorm(n = 10, mu = c(0, 0), Sigma = Sigma_w)
w

## [,1] [,2]
## [1,] -0.028129 -0.0476951
## [2,] 0.019630 0.1601535
## [3,] 0.060869 -0.0519072
## [4,] -0.057216 -0.0980981
## [5,] 0.025503 0.1211837
## [6,] 0.047698 -0.0810234
## [7,] 0.014671 0.0206600
## [8,] -0.005208 -0.0001712
## [9,] 0.097832 0.0729380
## [10,] -0.013452 -0.0386293
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Now, to generate simulated data for subject 1 and item 1 for object
relatives, we simply need to run this line of code:

rlnorm(1, beta[1] + u[1, 1] + w[1, 1] + (beta[2] +
u[1, 2] + w[1, 2]) * (0.5), sigma_e)

## [1] 398.3

For subject 2, all that would change is the subject id: instead
of u[1,1], and u[1,2] we would write u[2,1] and u[2,2]. The
for-loop below works through the simdat data-frame row by row,
looks up the subject id, the item id for that row, and the condition
coding for that row, and fills in the simulated reading time using
the above code. This is how the simulated data are generated.

Here is the complete function for generating simulated data. It
uses all the bits of code we discussed above.

library(MASS)
## assumes that no. of subjects and
## no. of items is divisible by 2.
gen_sim_lnorm2<-function(nitem=16,

nsubj=42,
beta=NULL,
Sigma_u=NULL, # subject vcov matrix
Sigma_w=NULL, # item vcov matrix
sigma_e=NULL){

## prepare data frame for a two-condition latin square:
g1<-data.frame(item=1:nitem,

cond=rep(c("a","b"),nitem/2))
g2<-data.frame(item=1:nitem,

cond=rep(c("b","a"),nitem/2))

## assemble data frame:
gp1<-g1[rep(seq_len(nrow(g1)),

nsubj/2),]
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gp2<-g2[rep(seq_len(nrow(g2)),
nsubj/2),]

simdat<-rbind(gp1,gp2)

## add subject column:
simdat$subj<-rep(1:nsubj,each=nitem)

## add contrast coding:
simdat$so<-ifelse(simdat$cond=="a",-1/2,1/2)

## subject random effects:
u<-mvrnorm(n=length(unique(simdat$subj)),

mu=c(0,0),Sigma=Sigma_u)

## item random effects
w<-mvrnorm(n=length(unique(simdat$item)),

mu=c(0,0),Sigma=Sigma_w)

## generate data row by row:
N<-dim(simdat)[1]
rt<-rep(NA,N)
for(i in 1:N){

rt[i] <- rlnorm(1,beta[1] +
u[simdat[i,]$subj,1] +
w[simdat[i,]$item,1] +
(beta[2]+u[simdat[i,]$subj,2]+

w[simdat[i,]$item,2])*simdat$so[i],
sigma_e)

}
simdat$rt<-rt
simdat$subj<-factor(simdat$subj)
simdat$item<-factor(simdat$item)
simdat}
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Let’s generate some simulated data and check what the data look
like:

dat <- gen_sim_lnorm2(nitem = 16, nsubj = 42, beta = beta,
Sigma_u = Sigma_u, Sigma_w = Sigma_w, sigma_e = sigma_e)

The data have the expected structure:

## fully crossed subjects and items:
head(t(xtabs(~subj + item, dat)))

## subj
## item 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## subj
## item 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## subj
## item 36 37 38 39 40 41 42
## 1 1 1 1 1 1 1 1
## 2 1 1 1 1 1 1 1
## 3 1 1 1 1 1 1 1
## 4 1 1 1 1 1 1 1
## 5 1 1 1 1 1 1 1
## 6 1 1 1 1 1 1 1
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## 8 measurements per condition:
head(t(xtabs(~subj + cond, dat)))

## subj
## cond 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
## a 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
## b 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
## subj
## cond 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
## a 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
## b 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
## subj
## cond 36 37 38 39 40 41 42
## a 8 8 8 8 8 8 8
## b 8 8 8 8 8 8 8

## contrast coding check:
xtabs(~so + cond, dat)

## cond
## so a b
## -0.5 336 0
## 0.5 0 336

## condition b is slower than a:
round(with(dat, tapply(rt, cond, mean)))

## a b
## 356 431

Everything checks out.



162 5 Using simulation to understand your model

5.6 Repeated generation of data to compute power
With the function for simulating data ready, we are now able to
repeatedly generated simulated data. Next, we generate data 100
times, fit a linear mixed model each time, and extract the t-value
from each linear mixed model fit. The vector t-values is then used
to compute power: we simply look at the proportion of absolute
t-values that exceed the value 2.

nsim <- 100
sotval <- rep(NA, nsim)

for (i in 1:nsim) {
# generate sim data:
dat <- gen_sim_lnorm2(nitem = 16, nsubj = 42, beta = beta,

Sigma_u = Sigma_u, Sigma_w = Sigma_w, sigma_e = sigma_e)

## fit model to sim data:
m <- lmer(log(rt) ~ so + (1 + so | subj) + (1 +

so | item), dat, control = lmerControl(calc.derivs = FALSE))
## extract the t-value
sotval[i] <- summary(m)$coefficients[2, 3]

}

mean(abs(sotval) > 2)

[1] 0.65

The following computation will take a lot of time because we are
generating and fitting data 3 × 100 times.

Here, we will assume that the true effect has the following range
of plausible values:

## lower bound:
0.12 - 2 * 0.05
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## [1] 0.02

## mean
0.12

## [1] 0.12

## upper bound
0.12 + 2 * 0.05

## [1] 0.22

We will run two for-loops now: the first for-loop selects one of the
plausible values as the value for the slope, and then the second for-
loop runs 100 simulations to compute power for that effect size.

This time, instead of ignoring convergence problems, we can record
the proportion of times that we get a convergence failure or prob-
lem, and we can discard that result:

nsim <- 100
## effect size possibilities:
b1_est <- c(0.02, 0.12, 0.22)
sotvals <- matrix(rep(NA, nsim * length(b1_est)), ncol = nsim)
failed <- matrix(rep(0, nsim * length(b1_est)), ncol = nsim)
for (j in 1:length(b1_est)) {
for (i in 1:nsim) {

beta[2] <- b1_est[j]
dat_sim <- gen_sim_lnorm2(nitem = 16, nsubj = 42,

beta = beta, Sigma_u = Sigma_u, Sigma_w = Sigma_w,
sigma_e = sigma_e)

## no correlations estimated to minimize convergence
## problems: analysis done after log-transforming:
m <- lmer(log(rt) ~ so + (so || subj) + (so ||

item), data = dat_sim)
## ignore failed trials
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if (any(grepl("failed to converge", m@optinfo$conv$lme4$messages))) {
failed[j, i] <- 1

} else {
sotvals[j, i] <- summary(m)$coefficients[2,

3]
}

}
}
## proportion of convergence failures:
rowMeans(failed)

Power can now be computed for each effect size:

pow <- rep(NA, length(b1_est))
for (k in 1:length(b1_est)) {

pow[k] <- mean(abs(sotvals[k, ]) > 2, na.rm = TRUE)
}

pow

## [1] 0.06122 0.72000 0.98990

Notice that there is a lot of uncertainty about the power estimate
here!

Recall that power is a function of

• effect size
• standard deviation(s); in linear mixed models, these are all the

variance components and the correlations
• sample size (numbers of subjects and items)

In papers, you will often see text like “power was x%”. This state-
ment reflects a misunderstanding; power is best plotted as a func-
tion of (a subset of) these variables.

In the discussion above, we display a range of power estimates;
this range reflects our uncertainty about the power estimate as a
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function of the plausible effect sizes. Often (as here) this uncer-
tainty will be very high! I.e., given what one knows so far, it may
be difficult to pin down what the assumed effect size etc., should
be, and that makes it hard to give a precise range for your power
estimate.

5.7 What you can now do
Given the above code and workflow, you can now figure out how
many subjects you might need to achieve 80% power, assuming a
certain effect size (or a range of effect sizes as above) and assum-
ing some specific values for the standard deviations and variance
covariance matrices.

You can also study Type I error properties of your model as a
function of whether the model is a maximal model or a varying
intercepts only model.

Example: Compute power as a function of effect size and sample
size. Note that the number of subjects has to be even, otherwise
the simulation code will fail! One could put in a test for this in
the code: if the number of subjects is divisible by 2, the modulo
function should return 0:

10%%2

## [1] 0

11%%2

## [1] 1

## define a function for computing power (as a
## function of effect size and subject sample size:
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compute_power <- function(b = NULL, nsubjects = 28) {
if (nsubjects%%2 != 0) {
stop("No. of subjects must be divisible by 2.")

}
nsim <- 100
sotvals <- rep(NA, nsim)
failed <- rep(0, nsim)
for (i in 1:nsim) {

beta[2] <- b
dat_sim <- gen_sim_lnorm2(nitem = 24, nsubj = nsubjects,

beta = beta, Sigma_u = Sigma_u, Sigma_w = Sigma_w,
sigma_e = sigma_e)

## no correlations estimated to avoid convergence
## problems: analysis done after log-transforming:
m <- lmer(log(rt) ~ so + (so || subj) + (so ||

item), data = dat_sim)
## ignore failed trials
if (any(grepl("failed to converge", m@optinfo$conv$lme4$messages))) {

failed[i] <- 1
} else {

sotvals[i] <- summary(m)$coefficients[2,
3]

}
}

## proportion of convergence failures and power:
paste(print("Prop. of convergence failures:"),
mean(failed), sep = " ")

paste(print("Power:"), mean(abs(sotvals) > 2, na.rm = TRUE),
sep = " ")

}

## usage: this will halt function with an error
## message compute_power(b=0.03,nsubjects=29)
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compute_power(b = 0.03, nsubjects = 28)

[1] “Prop. of convergence failures:” [1] “Power:” [1] “Power:
0.0707070707070707”

5.8 Exercises
5.8.1 Drawing a power curve given a range of effect sizes

Use the simulation code as provided to compute a power function
for effects sizes for the relative clause effect ranging from 0.025,
0.05, 0.10, and 0.15, given that you have 16 items and 42 partici-
pants.

5.8.2 Power and log-transformation

Modify the simulation code to generate not log-normally dis-
tributed data, but normally distributed data. Refit the Grodner
and Gibson (2005) data using raw reading times (i.e., do not log-
transform them), and then use the parameter estimates from the
data to compute a power function for effects sizes for the relative
clause effect ranging from 10, 30, 60, 80 ms, given that you have
16 items and 42 participants. Compare your power curve with that
of Part 1.

5.8.3 Evaluating models by generating simulated data

Generate data from the simulation function assuming a log-normal
likelihood and then generate data from the function you wrote in
Part 2 that assumes a normal likelihood. Compare the distribu-
tions of the two sets of simulated data to the observed distribu-
tions. Which simulation code produces more realistic data, and
why?
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5.8.4 Using simulation to check parameter recovery

Check whether the simulation code you wrote assuming a normal
likelihood can recover the parameters.

5.8.5 Sample size calculations using simulation

Load the data-set shown below:

gibsonwu <- read.table("data/gibsonwucrit.txt")

Use simulation to determine how many subjects you would need
to achieve power of 80%, given 16 items, and an effect size of 0.02
on the log ms scale. Draw a power curve: on the x-axis show the
number of subjects, and on the y-axis the estimated power. Now
draw two further curves, one for an effect size of 0.05 and another
for an effect size of 0.10. This gives you a power curve, taking the
uncertainty in the effect size into account.



6
Important distributions

These distributions are used quite frequently in Bayesian data anal-
yses, especially in psychology and linguistics applications. The Bi-
nomial and Poisson are discrete distributions, the rest are continu-
ous. Each distribution comes with a family of d-p-q-r functions in
R which allow us to compute the PDF/PMF, the CDF, the inverse
CDF, and to generate random data. For example, the normal dis-
tribution’s PDF is dnorm; the CDF and the inverse CDF are pnorm
and qnorm respectively; and random data can be generated using
rnorm.

The table below is adapted from https://github.com/wzchen/
probability_cheatsheet, which is licensed under a Creative
Commons Attribution-NonCommercial-ShareAlike 4.0 Interna-
tional License.

to-do: check that the notation is consistent with the main text’s.
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Distribution PMF/PDF and Support Expected Value Variance

Binomial
𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝜃)

𝑃 (𝑋 = 𝑘) = (𝑛
𝑘)𝜃𝑘(1 − 𝜃)𝑛−𝑘

𝑘 ∈ {0, 1, 2, … 𝑛} 𝑛𝜃 𝑛𝜃(1 − 𝜃)

Poisson
𝑃𝑜𝑖𝑠(𝜆)

𝑃(𝑋 = 𝑘) = 𝑒−𝜆𝜆𝑘
𝑘!

𝑘 ∈ {0, 1, 2, …} 𝜆 𝜆

Uniform
𝑈𝑛𝑖𝑓(𝑎, 𝑏)

𝑓(𝑥) = 1
𝑏−𝑎

𝑥 ∈ (𝑎, 𝑏) 𝑎+𝑏
2

(𝑏−𝑎)2

12

Normal
𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎)

𝑓(𝑥) = 1
𝜎

√
2𝜋𝑒− (𝑥−𝜇)2

(2𝜎2)

𝑥 ∈ (−∞, ∞) 𝜇 = ∑𝑛
𝑖=1 𝑥𝑖
𝑛 𝜎2 = ∑𝑛

𝑖=1(𝑥𝑖−�̄�)2

𝑛

Log-Normal
𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎)

1
𝑥𝜎

√
2𝜋𝑒−(log 𝑥−𝜇)2/(2𝜎2)

𝑥 ∈ (0, ∞) 𝜃 = 𝑒𝜇+𝜎2/2 𝜃2(𝑒𝜎2 − 1)

Beta
Beta(𝑎, 𝑏)

𝑓(𝑥) = Γ(𝑎+𝑏)
Γ(𝑎)Γ(𝑏)𝑥𝑎−1(1 − 𝑥)𝑏−1

𝑥 ∈ (0, 1) 𝜇 = 𝑎
𝑎+𝑏

𝜇(1−𝜇)
(𝑎+𝑏+1)

Exponential
𝐸𝑥𝑝(𝜆)

𝑓(𝑥) = 𝜆𝑒−𝜆𝑥

𝑥 ∈ (0, ∞) 1
𝜆

1
𝜆2

Gamma
𝐺𝑎𝑚𝑚𝑎(𝑎, 𝜆)

𝑓(𝑥) = 1
Γ(𝑎)(𝜆𝑥)𝑎𝑒−𝜆𝑥 1

𝑥
𝑥 ∈ (0, ∞) 𝑎

𝜆
𝑎

𝜆2

Student-𝑡
𝑡(𝑛)

Cauchy is 𝑡(1)

Γ((𝑛+1)/2)√𝑛𝜋Γ(𝑛/2)(1 + 𝑥2/𝑛)−(𝑛+1)/2

𝑥 ∈ (−∞, ∞) 0 if 𝑛 > 1 𝑛
𝑛−2 if 𝑛 > 2
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