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Two Parts

Contrasts for Factors With 
More Than 2 Levels

A General Approach for Testing 
Omnibus Tests



“Two Statistics”

Talk applies to experimental designs:

• IVs are categorical (factors)

• IV is randomly assigned (i.e., manipulated) and DV is 
measured

• Inferential and substantial goal is hypothesis test: Is 
there effect of IV on DV?

• Random assignment allows causal interpretation: IV is 
cause of change in DV

Different considerations can apply for observational data

• IV is measured (and not manipulated) and 
graded/continuous

• Inferential goal is estimation: What is size and 
magnitude of effect of IV on DV?

• Substantive goal is interpretation of effect (causal  or 
non-causal): What does effect of IV on DV mean?

Statistics is tool that helps us 
answer substantive questions!



Contrasts for Factors With More 
Than 2 Levels
My Provocative Take



The Contrast-First Approach



Steps of Contrast-First Approach

1. For factor with  levels, specify  
hypotheses among cell means 
(based on theory/EDA)

2. Transform  hypothesis into set 
of  non-redundant 
contrasts

3. Estimate model with specified 
contrasts and inspect estimates

4. For testing additional 
hypotheses, set up new contrasts 
and refit model

A B C D

b/x1 b/x2 b/x3

Hypothesis space

Data analysis spaceMay require several model fits, 
which can be expensive



The Model-First Approach

1. Set up statistical model using 
sum-to-zero contrasts

2. Check ANOVA table with 
omnibus tests
• Don’t look at fixed-effect coefficients! 

3. Inspect estimated means for 
model terms (main effects and 
interactions) of interest

4. Follow-up analysis: specify and 
tests contrasts on means using 
emmeans
• consider use of multiple comparison 

procedure (e.g. "holm")

A B C D

Hypothesis space

Data analysis space

Only requires single fit of model

Leverage abstraction through emmeans: hide 
contrast details behind software interface



Example Data • Freeman et al. (2010, JML):
• Cognitive task: 1 letter string per 

trial, 300 trials per participant

• IV1 (between-subjects) task: 
Naming task vs. lexical decision 
task

• IV2 stimulus (within-subjects): 
word vs. nonwords

• IV3 length (within-subjects): 
4, 5, or 6 letters length

• DV: response time

• Crossed random-effect design
• 45 participants (20 in naming task, 

25 in lexical decision task)

• 600 items (300 words, 300 
nonwords)



library("afex")
m3 <- mixed(rt ~ task*stimulus*length + (stimulus||id) + (task||item), fhch, expand_re=TRUE)
m3
# Mixed Model Anova Table (Type 3 tests, S-method)
# 
# Model: rt ~ task * stimulus * length + (stimulus || id) + (task || item)
# Data: fhch
#                 Effect        df         F p.value
# 1                 task  1, 44.23 15.17 ***   <.001
# 2             stimulus  1, 50.36 80.37 ***   <.001
# 3               length 2, 590.04 11.88 ***   <.001
# 4        task:stimulus  1, 58.29 29.01 ***   <.001
# 5          task:length 2, 578.59      0.52    .596
# 6      stimulus:length 2, 590.07      2.07    .127
# 7 task:stimulus:length 2, 578.60      0.14    .871
# ---
# Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1

Steps 1 & 2: Fit model using afex::mixed() and inspect ANOVA table



library("afex")
m3 <- mixed(rt ~ task*stimulus*length + (stimulus||id) + (task||item), fhch, expand_re=TRUE)
m3
# Mixed Model Anova Table (Type 3 tests, S-method)
# 
# Model: rt ~ task * stimulus * length + (stimulus || id) + (task || item)
# Data: fhch
#                 Effect        df         F p.value
# 1                 task  1, 44.23 15.17 ***   <.001
# 2             stimulus  1, 50.36 80.37 ***   <.001
# 3               length 2, 590.04 11.88 ***   <.001
# 4        task:stimulus  1, 58.29 29.01 ***   <.001
# 5          task:length 2, 578.59      0.52    .596
# 6      stimulus:length 2, 590.07      2.07    .127
# 7 task:stimulus:length 2, 578.60      0.14    .871
# ---
# Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1

Steps 1 & 2: Fit model using afex::mixed() and inspect ANOVA table

afex_plot(m3_nc, "length", "stimulus", "task", id = "id", error = "within", 
          data_geom = list(geom_quasirandom, geom_violin), 
          data_arg = list(list(width = 0.05, dodge.width = 0.5), 
                          list(width = 0.5)))

Step 3: Inspect estimated means



library("afex")
m3 <- mixed(rt ~ task*stimulus*length + (stimulus||id) + (task||item), fhch, expand_re=TRUE)
m3
# Mixed Model Anova Table (Type 3 tests, S-method)
# 
# Model: rt ~ task * stimulus * length + (stimulus || id) + (task || item)
# Data: fhch
#                 Effect        df         F p.value
# 1                 task  1, 44.23 15.17 ***   <.001
# 2             stimulus  1, 50.36 80.37 ***   <.001
# 3               length 2, 590.04 11.88 ***   <.001
# 4        task:stimulus  1, 58.29 29.01 ***   <.001
# 5          task:length 2, 578.59      0.52    .596
# 6      stimulus:length 2, 590.07      2.07    .127
# 7 task:stimulus:length 2, 578.60      0.14    .871
# ---
# Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1

Steps 1 & 2: Fit model using afex::mixed() and inspect ANOVA table

Step 4(a): Follow-up analysis

library("emmeans")
emmeans(m3_nc, "length") %>% 
  contrast("poly")
#  contrast  estimate     SE  df z.ratio p.value
#  linear     0.05405 0.0111 Inf   4.856  <.0001
#  quadratic  0.00827 0.0192 Inf   0.430  0.6670
# 
# Results are averaged over the levels of: task, stimulus 
# Degrees-of-freedom method: asymptotic 



library("afex")
m3 <- mixed(rt ~ task*stimulus*length + (stimulus||id) + (task||item), fhch, expand_re=TRUE)
m3
# Mixed Model Anova Table (Type 3 tests, S-method)
# 
# Model: rt ~ task * stimulus * length + (stimulus || id) + (task || item)
# Data: fhch
#                 Effect        df         F p.value
# 1                 task  1, 44.23 15.17 ***   <.001
# 2             stimulus  1, 50.36 80.37 ***   <.001
# 3               length 2, 590.04 11.88 ***   <.001
# 4        task:stimulus  1, 58.29 29.01 ***   <.001
# 5          task:length 2, 578.59      0.52    .596
# 6      stimulus:length 2, 590.07      2.07    .127
# 7 task:stimulus:length 2, 578.60      0.14    .871
# ---
# Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1

Steps 1 & 2: Fit model using afex::mixed() and inspect ANOVA table
em1 <- emmeans(m3_nc, c("stimulus", "task"))
em1
#  stimulus task   emmean     SE  df asymp.LCL asymp.UCL
#  word     naming  0.725 0.0517 Inf     0.623     0.826
#  nonword  naming  1.015 0.0518 Inf     0.913     1.116
#  word     lexdec  1.095 0.0464 Inf     1.004     1.186
#  nonword  lexdec  1.163 0.0464 Inf     1.072     1.254
# 
# Results are averaged over the levels of: length 

## let's test: is there effect of stimulus per task?
con1 <- list(
  stim_naming = c(-1, 1, 0, 0),
  stim_lexdec = c(0, 0, -1, 1)
)

contrast(em1, con1, adjust = "holm")
#  contrast    estimate     SE  df z.ratio p.value
#  stim_naming   0.2901 0.0301 Inf   9.646  <.0001
#  stim_lexdec   0.0672 0.0273 Inf   2.460  0.0139
# 
# Results are averaged over the levels of: length 

Step 4(b): Follow-up analysis



FAQ on Model-First Approach 
• What is ultimately benefit of model-first approach?

• Less cumbersome and mentally taxing, all tests are performed on design-cell space. In case 
you want to test more than one set of contrasts, avoids refitting model.

• What if I have a specific hypothesis or am interested in the random-effect 
estimates?

• If you have very specific hypothesis and no real uncertainty of how the means will order or 
hypotheses regarding the random-effect estimates, the contrast-first approach is probably 
better, even if more cumbersome.

• Can you only test contrasts for model term if corresponding omnibus test is 
significant?

• No. Whether you want to look at omnibus tests depends on hypothesis. If strong hypothesis 
exists, omnibus test not necessary (and can hide effects). Consult omnibus test if results can 
surprise you. 

• Do you always have to correct for multiple testing when calculating contrasts?
• It depends. If you only conduct  pre-planned contrasts (for factor with  levels), 

multiple comparison correction probably not necessary. For not planned contrasts or more 
than  contrasts, Holm-correct probably a good idea.

• Why should I not look at model coefficients for factors with more than 2 levels?
• For a factor with  levels there are only  coefficients so there exist no 1 to 1 mapping. 

Especially for popular canned contrasts (especially contr.sum or contr.equalprior), 
coefficients cannot be interpreted.



Henrik’s List of Things to Remember About 
Contrasts
• Appropriate contrasts for models with interactions need to sum to 

zero (in balanced designs): contr.sum(), contr.helmert(), 
contr.sdif()

• Intercept needs to correspond to (unweighted) grand mean

• For treatment contrasts and other contrasts that do not sum to zero, lower 
order effects correspond to simple effects and not main effects

• For Bayesian models, contrasts should have same marginal effect on 
all factor levels: bayestestR::contr.equalprior()

• For factors with more than 2 levels, avoid looking at model estimates 
unless contrasts were specifically chosen for this purpose



A General Approach for Testing 
Omnibus Tests
Wald Tests + More emmeans Magic



Estimation and Testing can be Easy in 
Frequentist Approach
• lme4 and MixedModels.jl

• LMMs (normal distribution) and GLMMs (with response distribution in the 
“exponential family”: binomial, Poisson, Gamma, etc.)

• Allows estimating only conditional mean of response distribution

• glmmTMB (or gamlss)
• Supports wider set of selected response distributions, e.g. beta, Student t, beta-

binomial, negative binomial, Tweedie
• Allows distributional models: can model both location and scale (with fixed-effects) 

or other distributional parameters (supports e.g. zero-one-inflated models)
• Supports flexible correlation structures (compound-symmetric, autoregressive, etc.) 

• Statistical testing “easy” 
• Wald tests of simple or compound hypotheses require only fitted model
• For LMMs, some methods even allow estimating denominator df for small samples



Problems for Frequentist Approach

1. Convergence Issues: 
• Every additional parameter increases dimensionality of search space by one
• If data is sparse for given model, difficult to estimate variance/covariance parameters 

(“singular fit”): Eager & Roy (2017) - Mixed Effects Models are Sometimes Terrible
• Dale Barr: “Reducing random-effects structure of model introduces unknown risk of 

anti-conservativity, and should be done with caution”

2. Extension to other response distributions very difficult for models 
involving random effects
• Evaluating likelihood equation requires integrating likelihood of data with respect to 

random effects: 
� � �

• Simple only for normal response distribution (random effects can be integrated out)
• Generally requires numerical methods (Gauss-Hermite method) or approximations 

(Laplace Approximation of integral) and model-specific approach
• In psych/cognitive science, often interested in cognitive models with complicated 

likelihoods: Diffusion model, multinomial processing tree (MPT) models



Bayesian Alternatives Make Estimation Easy

• Can use MCMC integration for integrating likelihood of data with respect to 
random effects (i.e., no further numerical methods necessary)

• brms
• Supports wide range of response distributions including 4-parameter diffusion model 

(Wiener model)

• Allows extension to new response distribution via custom_family()

• Fully supports estimation of distributional models with arbitrarily complex formula 
for each parameter of response distribution

• Supports various advanced features: multivariate responses, monotonic effects, 
meta-analyses, certain mixture models, etc.

• Estimation much more robust due to regularisation provided by priors and MCMC 
sampling (e.g., Bates et al., 2015, arXiv)



Bayesian Testing Generally Not Trivial

• Simplest method for testing (inspection of whether 95%-CI includes 0) only 
possible for simple hypothesis

• Principled testing in Bayesian framework of simple and compound hypotheses is 
Bayes factor 

• Bayes factor can be highly sensitive to parameter priors 
• For compound hypotheses computationally expensive:

• Requires estimating two models, full and restricted model, for each test
• bridgesampling package requires at least an order of magnitude more samples for testing than for 

estimation; see also Schad et al., 2022)

• Misleading propaganda on philosophical issues surrounding Bayes factors
• Bayes factor only provides relative comparison of two parameterised models (which allows 

providing evidence for null model/hypothesis)
• Does not control false positives (type I errors): does not provide adequate control of fooling 

oneself
• Type I error control of p-values provides some connection to external world outside of model



Easiness and Flexibility for Mixed-Effects Models

Frequentist Bayesian

Estimation

Testing

Fast, brittle, 
& difficult to 

extend

Slower, robust, 
& easy to 

extend

Fast, 
specification simple, 
control errors, prone 
to misunderstanding

Very slow, 
cumbersome model 

setup, prior 
dependence 



Combining Bayesian Estimation 
with Frequentist Testing? emmeans

library("bayestestR") # for contr.equalprior_deviations
library("brms")       # for model estimation
library("emmeans")    # for calculating p-values using joint_tests()

options(contrasts = c('contr.equalprior_deviations', 'contr.poly’)) # set contrasts

mbayes <- brm(rt ~ task*stimulus*length + (stimulus*length|id) + (task|item), fhch)

joint_tests(mbayes)
 # model term           df1 df2 F.ratio  Chisq p.value
 # task                   1 Inf  13.806 13.806  0.0002
 # stimulus               1 Inf  73.654 73.654  <.0001
 # length                 2 Inf  10.220 20.440  <.0001
 # task:stimulus          1 Inf  26.615 26.615  <.0001
 # task:length            2 Inf   0.437  0.874  0.6463
 # stimulus:length        2 Inf   1.908  3.816  0.1484
 # task:stimulus:length   2 Inf   0.128  0.256  0.8796



Can we use Bayesian-Frequentist 
p-Values?

A Simulation Study



Simulation Setup

Simulate Data

• Null hypothesis is true

• 2 and 3 groups

• Sample size: 20 to 100

• 3 models:

• ANOVA (��
� = 1) 

• Logistic  β(a = 2, b = 2)

• Logistic GLMM (�� = .5 or 1)

Estimate Model

• Frequentist model

• Bayesian models:

• Improper flat prior

• Wide prior: t(3, 0, 0.5)

• Tight prior: t(3, 0, 0.2)

• [ANOVA only] Non-centred 
Oosterwijk prior: 
t(3, 0.35, 0.102)

Calculate 
p-value

• Using 
emmeans::joint_tests()

• Record p-value of main effect 
of group

Repeat 1000 times



ANOVA Logistic GLM



Logistic GLMM



Simulation Results Summary

• Type I error rates of flat prior very similar to frequentist model

• Type I error rates of zero-centred priors conservative
• wider (i.e., weakly informative) priors only slightly conservative

• tighter priors noticeable conservative, especially for small Ns

• Non-centred priors have highly anti-conservative Type I error rates 
and are unsuitable for calculation p-values

• We should probably run more than 1000 replicates per simulation!

• brms default – improper flat priors on fixed-effects – seems to 
provide performance like frequentist approach so is probably OK!



Henrik’s Simple Statistics

Model-First + Follow-Up Analysis Approach

1. Set up statistical model using sum-to-
zero contrasts

2. Check ANOVA table with omnibus tests
• Don’t look at fixed-effect coefficients! 

3. Inspect estimated means for model 
terms (main effects and interactions) of 
interest
• Ideally graphically (e.g., afex_plot())

4. Follow-up analysis: specify and tests 
contrasts on means using emmeans
• consider use of multiple comparison 

procedure (e.g. "holm")

Bayesian-frequentist p-values

• Nominal type I errors with flat/wide 
priors

library("bayestestR")
library("brms")
library("emmeans")

options(contrasts = c('contr.equalprior', 
'contr.poly’))

bayesian_model <- brm(formula, data)
joint_tests(bayesian_model)

afex::afex_plot(bayesian_model, ...)
emmeans(bayesian_model, ...)

Learn emmeans

p-values are OK



Power for ANOVA



My Take on Specifying Random 
Effects



Specifying Random-Effects Structure
• Omitting random-effect parameters for model terms that vary within levels of a random-

effect grouping factor and for which random variability exists leads to non-iid residuals 
(i.e., �) and potentially anti-conservative results (e.g., Barr, Levy, Scheepers, & Tily, 2013, 
JML).

• Safeguard is maximal model justified by the design (Barr et al., 2013).
• Which factors/terms vary within levels of (i.e. are crossed with) each random-effect grouping 

factor?
• Are there replicates within factor levels (or parameters/coefficients) for levels of random-effects 

grouping factor?

• If maximal model is overparameterized and/or contains degenerate estimates or singular 
fits, power of maximal model can be reduced and a reduced model should be used 
(Bates et al., 2015; Matuschek et al., 2017).

• Start by removing correlation among random-effect parameters
• Remove random-effect parameters with variance of 0 and/or for highest-order effects with lowest 

variance
• Compare p-values/fixed-effect estimates across models (p-values from degenerate/minimal 

models are potentially not reliable)
• Warning: Reducing model introduces unknown risk of anti-conservativity and should be done with 

caution!
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